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Abstract

X-12-ARIMA is the Census Bureau's new seasonal adjustment pro-

gram. It provides four types of enhancements to X-11-ARIMA: (1)

Alternative seasonal, trading day, and holiday e�ect adjustment capa-

bilities that include adjustments for e�ects estimated with user-de�ned

regressors, additional seasonal and trend �lter options, and an alter-

native seasonal-trend-irregular decomposition. (2) New diagnostics of

the quality and stability of the adjustments achieved under the op-

tions selected. (3) Extensive time series modeling and model selection

capabilities for linear regression models with ARIMA errors, with op-

tional robust estimation of coe�cients. (4) A new user interface with

features to facilitate batch processing large numbers of series.

key words: RegARIMA models; Model selection; Trading day mod-

els.

The Census Bureau's well known X{11 program was introduced in 1965
(Shiskin, Young and Musgrave, 1967). It was the product of over a decade
of development beginning with \Method I" in 1954, followed by twelve ex-
perimental variants (X-0, X-1, etc.) of \Method II," culminating in X-11
(Shiskin 1978). X-11 followed in a long tradition of empirical smoothing and

seasonal adjustment procedures (Bell and Hillmer 1984), particularly the
\ratio-to-moving-average" method of Macaulay (1931). The early Census
Bureau methods were the �rst computerized seasonal adjustment methods.
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X-11 became something of a standard that was used by statistical agen-
cies around the world. Important features of X-11 that contributed to its
widespread use are its treatment of atypical (\extreme") observations, its
variety of moving averages for estimating evolving trend and seasonal com-
ponents (and its methods and diagnostics for selecting among these), its

re�ned asymmetric moving averages for use near the ends of time series, and
its method for estimating trading day e�ects.

Statistics Canada's X-11-ARIMA seasonal adjustment program (Dagum
1980) contained all the capabilities of X-11 and provided important improve-
ments. The most important is X-11-ARIMA's ability to extend the time

series with forecasts and backcasts from ARIMA models prior to seasonal
adjustment. The use of forecast and backcast extensions results in initial
seasonal adjustments whose revisions are smaller, on average, when they are
recalculated after future data become available, see Huot et al. (1986) and
Bobbitt and Otto (1990), for example. Extension overcomes de�ciencies in
the preliminary X-11 trend estimation procedure at the ends of the series,

especially in the �rst and last half-year. In the additive decomposition case,
extension with optimal forecasts and backcasts for the half length of the
symmetric seasonal �lter used minimizes revisions in a mean square sense.
The history of this optimality property and an elegant derivation are given
in Cleveland (1983).

Other X-11-ARIMA improvements include its more systematic and fo-
cussed diagnostics for assessing the quality of its seasonal adjustments, which
enable users to get good results more easily. And X-11-ARIMA o�ers diag-
nostics for comparing indirect and direct seasonal adjustments of series that
are aggregates of multiple component series. X-11 did not calculate indirect

adjustments.
The Census Bureau's new X-12-ARIMA program includes essentially

all the capabilities of the latest version of X-11-ARIMA, X-11-ARIMA/88
(Dagum, 1988), including all the capabilities of X-11. The major improve-
ments in X-12-ARIMA address inadequacies of X-11 not targeted by X-11-

ARIMA/88, as well as limitations in the modeling and diagnostic capabilities
of X-11-ARIMA/88. These major improvements are the focus of this arti-
cle; they are discussed and illustrated in Sections 2 through 6. We outline
these sections below, but �rst we briey discuss the general structure of X-
12-ARIMA.

Plans for X-12-ARIMA developed around the operation-ow diagram of

Figure 1. This posits a regARIMA (linear regression model with ARIMA
time series errors) modeling subprogram that can provide forecasts, back-
casts, and prior adjustments for various e�ects before the seasonal adjust-
ment subprogram in the central box is invoked. The �nal box in Figure 1

2



represents a set of post-adjustment diagnostic routines that can be used to
obtain indicators of the e�ectiveness of both the modeling and the seasonal
adjustment options chosen. The seasonal adjustment methodology symbol-
ized by the central box is an enhanced version of the X-11 methodology. A
signi�cant number of the enhancements were suggested by seasonal adjust-

ment experts at statistical o�ces and central banks in the U.S., Canada, the
United Kingdom, Germany, New Zealand, and Japan. The improvements
introduced in X-11-ARIMA/88 were also inuential.

X-12-ARIMA
 RegARIMA Models
(Forecasts, Backcasts,
      Preadjustments)

SEASONAL ADJUSTMENT
          (Enhanced X-11)

   DIAGNOSTICS
(including revisions,
 sliding spans, spectra,
 M1   M11, Q, etc.)

   Modeling and Model
Comparison Diagnostics

Figure 1. Flow Diagram for Seasonal Adjustment with X-12-ARIMA.

The major methodological improvements of X-12-ARIMA fall into three
general groups that are discussed in the sections indicated: new `X-11' ad-
justment options (Section 2), new diagnostics (Section 3), and new modeling
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capabilities emphasizing regARIMA modeling and model selection (Section
4). Section 5 illustrates how these modeling capabilities can address real
problems that arise in seasonal adjustment. Section 6 briey discusses an-
other major improvement of X-12-ARIMA { its new user interface. Section
7 provides concluding remarks and an ftp address for obtaining the program.

We now give a more detailed overview.
Section 2 discusses how new options in X-12-ARIMA provide additional

exibility in the basic seasonal adjustment methodology of X-11 and X-11-
ARIMA. New �lter options include a longer seasonal moving average, al-
lowance for user speci�cation of Henderson trend �lters of any (odd) length,

and slight modi�cations to some of X-11's asymmetric moving averages so
that more are derived from a single optimization principle (outlined in the
Appendix). The program also provides a \pseudo-additive" decomposition
that has been found useful for series with periodically small or zero values.
Finally, improvements were made in how trading day and other regression
e�ects, including user-de�ned e�ects (a new capability), are estimated from

a preliminary version of the irregular component. (Alternatively, such e�ects
can be estimated directly from the observed time series using the program's
regARIMA modeling capabilities.)

Section 3 discusses signi�cant diagnostic capabilities X-12-ARIMA pro-
vides beyond those of X-11 and X-11-ARIMA. These include spectrum es-

timates for detection of seasonal and trading day e�ects and also sliding
spans (Findley and Monsell 1986, Findley et al. 1990) and revisions history
diagnostics for assessing the stability of seasonal adjustments. We were mo-
tivated in this development by our experience that while the diagnostics of
X-11-ARIMA are an important advance beyond those of X-11, they some-

times fail to identify series that cannot be satisfactorily adjusted. They also
sometimes give an incorrect indication as to whether the direct or an indirect
adjustment of an aggregate series should be preferred (see the examples in
these articles).

Other important features of X-12-ARIMA derive from its regARIMA

modeling capabilities; these are discussed in Section 4 and illustrated in
Section 5. X-11-ARIMA lacks the capability to add regression e�ects to the
models used for forecast extension. While preadjustment for trading day and
other regression e�ects estimated from irregulars (the approach taken by X-
11-ARIMA/88) may usually do as well for point forecasts, this approach is
more limited than use of regARIMA models as our later discussion will show.

X-12-ARIMA's use of regARIMA models can potentially improve forecasts
and backcasts, and, through its outlier detection capabilities, help robustify
model parameter estimates and model forecasts against additive outliers and
level shifts.
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The focus in Sections 4 and 5 is not, however, on advantages of using
regARIMA models for forecast extension. Rather, it is on a variety of im-
portant direct applications for regARIMA models in seasonal adjustment.
These include the following. (1) regARIMA models for trading day and hol-
iday e�ects (Bell and Hillmer 1983) provide more reliable diagnostics for the

presence of such e�ects than do F-statistics of regression models �t to the
irregular component of the seasonal decomposition as in X-11. (See Sec-
tions 2.4 and 4.3.) (2) Chang and Tiao (1983) and Bell (1983) showed how
regARIMA models can be used to detect additive outliers (AOs) and level
shifts (LSs). (See also Chang, Tiao, and Chen 1988; Section 4.2; and Ap-

pendix B.) Allowance for such outlier e�ects in a model can help protect the
model's coe�cient estimates and forecasts against corruption (Burman and
Otto 1988; Ledolter 1989). (3) The ability to handle AOs provides a capabil-
ity for dealing with small amounts of missing data: Bruce and Martin (1989)
observed that exact treatment of missing observations is approximately the
same as replacing missing observations by their estimated AO e�ects. (See

Section 5.2.) (4) Preadjustment for LSs (before seasonal adjustment by X-
11) can overcome one of the most troubling common sources of di�culty for
X-11: the inability of its trend �lters to track sudden changes in level. For
example, Figure 2 shows the graph of the series of net income from U.S. retail
sales and the modi�ed series resulting from the use of a level shift regressor in

a regARIMA model of the log series to remove the precipitous drop in level
in the �rst quarter of 1982. (This drop was caused by a governmental action,
called the Paperwork Reduction Act, that took smaller companies out of the
survey universe.) (5) regARIMA models can be used to test for changes in
seasonal pattern, in trading day e�ects, etc. Note from Figure 2 that the net

income series from the reduced universe appears to have a di�erent, more
stable, seasonal pattern than the pre-1982 series from the larger universe. In
Section 5.1, we shall show how regARIMA models can be used to test this
series for a change in seasonal pattern.

To complement its regARIMA modeling capabilities, X-12-ARIMA also

provides extensive model selection diagnostics, including recently developed
diagnostics based on out-of-sample forecast performance. The need for such
diagnostics in seasonal adjustment will become clear in Sections 4 and 5:
many of the model comparisons that arise naturally within the rich class of
regARIMA models appropriate for time series with seasonal and calendar
e�ects are not addressed by standard statistical tests.

Finally, Section 6 briey illustrates the new user interface of X-12-ARIMA.
This interface, which uses a simple, self-descriptive command language, greatly
simpli�es the program's use in both production and research environments.
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Figure 2. Net Income (Sales� Costs) from U. S. Retail Sales With and

Without Level-Shift Adjustment.

We begin with a review of the decomposition procedures of X-11. This

serves as background for the discussion of the program's new seasonal and
trend moving average options in Section 2.2 (and Appendix A) and its new
decomposition option in Section 2.3. The �nal Section 2.4 explores issues
surrounding the estimation of regression e�ect components, such as trading
day components, from the irregulars. It includes a derivation of X-11's de-

seasonalized model for multiplicative trading day e�ects, and discussion of
how the derivation's model-deseasonalization approach is extended in X-12-
ARIMA to the additive and other decompositions, and to other regression
e�ects.

2.1 Decompositions for Seasonal Time Series

The basic seasonal adjustment procedure of X-11 and X-11-ARIMA de-
composes a monthly or quarterly time series into a product of (estimates of) a
trend component, a seasonal component, and a residual component, called the
irregular component. Such a multiplicative decomposition is usually appro-

priate for series of positive values (sales, shipments, exports, etc.) in which
the size of the seasonal oscillations increases with the level of the series, a
characteristic of most seasonal macroeconomic time series. Under the multi-
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plicative decomposition, the seasonally adjusted series is obtained by dividing
the original series by the estimated seasonal component. The values of the
estimated seasonal component are called seasonal factors. There is also an
analogous additive decomposition, which decomposes the series into a sum of
trend, seasonal, and irregular components, with the seasonally adjusted series

obtained by subtracting away the estimated seasonal component. Although
analyses of the properties of X-11 often focus on the additive decomposition
(e.g., Cleveland and Tiao 1976; Wallis 1982; Ghysels, Granger, and Siklos
1996), the multiplicative decomposition is used far more frequently.

X-12-ARIMA retains the basic multiplicative and additive decomposi-

tions. Also, in common with X-11-ARIMA, the X-12-ARIMA program can
calculate a second multiplicative decomposition by exponentiating the ad-
ditive decomposition of the logarithms of the series being adjusted. This is
called the log-additive decomposition. It is used mainly for research purposes,
because it requires a bias correction for its trend estimates (due to geometric
means being less than arithmetic means) as well as a di�erent calibration for

extreme value identi�cation based on the log normal distribution. Section
2.3 describes a new, fourth decomposition, the pseudo-additive decomposi-

tion, that was developed at the U.K. Central Statistical O�ce.
Following X-11, the default scheme of X-12-ARIMA for obtaining the

various three-component decompositions of a time series is a three-stage pro-

cedure. This is presented in Figure 3 for the simpli�ed situation of a series
with no extreme values. It is further assumed that the series has been ex-
tended far enough by forecasts and backcasts that the data required by the
formulas in Figure 3 are available for all months t in the span of the observed
series. The only calculations whose role may not be clear are those of Step

(iv) in Stages 1 and 2. Their e�ect is usually to make twelve-month totals
of the adjusted series be close to the corresponding totals of the unadjusted
series. (The log-additive decomposition is not explicitly presented in Figure
3, because its computations parallel those of the additive decomposition. In
X-12-ARIMA, the log-additive decomposition includes a bias-correction due

to Thomson and Ozaki (1992), which is applied to the exponentiated trend
component.)

2.2 X-11 Seasonal Adjustment and Trend Filters

2.2.1 Symmetric Seasonal Filters

The symmetric seasonal moving averages used in step (iii) of Stages 1
and 2 in Figure 3 have a similar structure: they are simple 3-term moving
averages, of simple averages of odd length, 2n+1; of SI ratios from the same
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calendar month as month t,

S
3�(2n+1)
t =

1

3

�
S2n+1
t�12 + S2n+1

t + S2n+1
t+12

�

with

S2n+1
t =

1

2n+ 1

nX
j=�n

SIt+12j:

S
3�(2n+1)
t is referred to as the 3�(2n+1) seasonal moving average or seasonal

�lter. In the default setting of X-11, the 3 � 3 seasonal moving average is

used at step (iii) of Stage 1, and the 3 � 5 seasonal moving average at step

(iii) of Stage 2. X-12-ARIMA and X{11-ARIMA/88 di�er from X-11 in

that step (iii) of Stage 2 uses a criterion due to Lothian (1984) to select

from among four �lters: the 3� 3; 3� 5; and 3� 9 moving averages, and the

average of all SI ratios from the same calendar month as t, the stable seasonal

average. Optionally, in all three programs the user can specify any of these

moving averages for use in any calendar month. The chosen averages are then

used in step (iii) of both Stages 1 and 2. In X-12-ARIMA, there is also an

optional 3� 15 seasonal moving average. This �lter was used in X-10 and in

a customized version of X-11 at the German Bundesbank as an alternative

to the stable seasonal average for series of length at least 20 years. The

appropriateness of longer seasonal moving average �lters has been suggested

by researchers investigating ARIMA model-based signal-extraction seasonal

adjustments. (See pp. 308-309 of Bell and Hillmer, 1984.)

2.2.2 Symmetric Trend Filters

The symmetric Henderson trend (or \trend-cycle") moving averages used

in step (i) of Stages 2 and 3 will perfectly reproduce a cubic polynomial. Also,

their \weights" h
(2H+1)
j change with j as smoothly as possible, in a sense we

explain in Appendix A, where their formula is given. In X-11 and X-11-

ARIMA/88, either the user or the automatic \variable trend cycle curve

routine", discussed at the end of Appendix A, chooses among Henderson

�lters of length 9; 13; and 23.

In X-12-ARIMA, the automatic selection procedure is the same, but the

user can alternatively specify any odd-number length 2H + 1. The speci�ed

Henderson �lter is then used in step (i) of both Stages 2 and 3. In recent

years the Australian Bureau of Statistics has been using 15-term and 17-term

Henderson �lters in their customized version of X-11, as alternatives to the

13-term �lter.
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Yt, a monthly series with no extreme values, extended by forecasts and backcasts

so that modi�ed formulas are not needed at the series' ends.

Decompositions of Yt into trend (Tt), seasonal (St), and irregular (It) components:

Multiplicative(M): Yt = TtStIt

Additive(A): Yt = Tt + St + It

Pseudo-Additive(PA): Yt = Tt(St + It � 1).

Stage 1. Initial Estimates

(i) Initial Trend Estimate via \centered 12-term" (13-term) moving average:

T
(1)
t

=
1

24
Yt�6 +

1

12
Yt�5 + � � �+

1

12
Yt + � � �+

1

12
Yt+5 +

1

24
Yt+6

(ii) Initial \SI Ratio": (M, PA): SI(1)
t

= Yt=T
(1)
t

.

(A): SI
(1)
t

= Yt � T
(1)
t
.

(iii) Initial Preliminary Seasonal Factor via \3� 3" seasonal moving average:

bS(1)
t

=
1

9
SI

(1)
t�24 +

2

9
SI

(1)
t�12 +

3

9
SI

(1)
t

+
2

9
SI

(1)
t+12 +

1

9
SI

(1)
t+24

(iv) Initial Seasonal Factor:

(M, PA): S(1)
t

=
bS(1)
t

1
24
bS(1)
t�6 +

1
12
bS(1)
t�5 + � � �+ 1

12
bS(1)
t+5 +

1
24
bS(1)
t+6

(A): S
(1)
t

= bS(1)
t

�

� bS(1)
t�6

24
+

bS(1)
t�5

12
+ � � �+

bS(1)
t+5

12
+

bS(1)
t+6

24

�

(v) Initial Seasonal Adjustment:

(M): A
(1)
t

=
Yt

S
(1)
t

(A): A
(1)
t

= Yt � S
(1)
t

(PA): A
(1)
t

= Yt � T
(1)
t

(S
(1)
t

� 1)
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Stage 2. Seasonal Factors and Seasonal Adjustment

(2H + 1)-Term Henderson Weights (see Appendix A):

h
(2H+1)
j ; �H � j � H; (hj = h

�j):

(i) Intermediate Trend: For data-determined H (see Appendix A),

T
(2)
t =

HX
j=�H

h
(2H+1)
j A

(1)
t+j

(ii) (M, PA): SI(2)t = Yt=T
(2)
t

(A): SI
(2)
t = Yt � T

(2)
t .

(iii) Preliminary Seasonal Factor via \3� 5" seasonal moving average:

bS(2)t =
1

15
SI

(2)
t�36 +

2

15
SI

(2)
t�24 +

3

15
SI

(2)
t�12 +

3

15
SI

(2)
t +

3

15
SI

(2)
t+12 +

2

15
SI

(2)
t+24 +

1

15
SI

(2)
t+36

(iv) Seasonal Factor:

(M, PA): S(2)t =
bS(2)t

1
24
bS(2)t�6 +

1
12
bS(2)t�5 + � � �+ 1

12
bS(2)t+5 +

1
24
bS(2)t+6

(A): S
(2)
t = bS(2)t �

� bS(2)t�6

24
+
bS(2)t�5

12
+ � � �+

bS(2)t+5

12
+
bS(2)t+6

24

�

(v) Seasonal Adjustment:

(M): A
(2)
t =

Yt

S
(2)
t

(A): A
(2)
t = Yt � S

(2)
t

(PA): A
(2)
t = Yt � T

(2)
t

�
S
(2)
t � 1

�
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Stage 3. Final Henderson Trend and Final Irregular

(i) Final Trend: For data-determined H, possibly di�erent from Stage 2(i):

T
(3)
t

=

HX

j=�H

h
2H+1
j A

(2)
t+j

(ii) Final Irregular:

(M, PA): I
(3)
t =

A
(2)
t

T
(3)
t

(A): I
(3)
t = A

(2)
t � T

(3)
t

Estimated Decomposition

(M): Yt = T
(3)
t S

(2)
t I

(3)
t

(A): Yt = T
(3)
t + S

(2)
t + I

(3)
t

(PA): Yt = T
(2)
t (S

(2)
t � 1) + T

(3)
t I

(3)
t

Figure 3. The X-11 Calculations for Multiplicative (M), Additive (A) and

Pseudo-Additive Seasonal-Trend-Irregular Decompositions. The calculations

are shown with X-11's default seasonal �lter choices in Step (iii) of Stages

1 and 2. Calculations used to reduce the inuence of \extreme" values on

seasonal factors are omitted. Forecasts and backcasts are required to enable

the symmetric �lters shown to be used at the ends of the series.

Figure 4 displays the squared gain functions (up to frequency � = .25)������
HX

j=�H

h
(2H+1)
j e�i2�j�

������
2

=

0
@h(2H+1)

0 + 2
HX
j=1

h
(2H+1)
j cos 2�j�

1
A
2

; 0 � � � :5;

of the 13- and 17-term Henderson �lters (H = 6; 8), together with the squared

gain functions of the resulting X-11 additive-decomposition trend-component

extraction �lters for a monthly series. These trend extraction �lters are

obtained by combining (convolving) all of the additive decomposition's linear

operations in Stages 1{3 used to obtain the �nal trend estimates T
(3)
t . Recall
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Figure 4. Henderson and Additive X-11 Trend Filter Squared Gains for

Frequencies [0,.25]. The deseasonalization prior to �nal trend estimation pro-

duces the zero at � = 1=12 in the trend �lter gains, with the result that

some higher frequency components will be suppressed less than lower fre-

quency components near � = 1=12: When the 17-term Henderson �lter is

used, the second peak in the trend �lter's squared gain is quite small. Con-

sequently, trends from this �lter have negligible susceptibility to displaying

anomalous higher frequency oscillations compared to trends obtained by use

of the 13-term Henderson �lter.
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that the product of the squared gain function and the spectral density of the

�lter's input series gives the spectral density of the output series, when the

input series is stationary, see Koopmans (1974, p. 86). Thus, at frequencies

where the gain function is close to 0, the variance components of the input

series are suppressed. Figure 4 shows that the Henderson �lters suppress

the higher frequency components of a stationary input series and essentially

preserve the magnitudes of the components whose frequency is close enough

to 0. A similar e�ect can be expected with nonstationary input series, see

Oppenheim and Schafer (1975, p. 110). As Figure 4 shows, the squared

gain function of the 13-term Henderson �lter has substantial power beyond

the �rst seasonal frequency 1=12. This results in the peak just beyond this

frequency in the squared gain of the associated trend extraction �lter. (The

preceding dip down to zero at 1=12 comes from the seasonal adjustment

operations applied before the application of the Henderson trend �lters).

Because of this peak, it has been claimed that X-11's �nal trend estimate

from the 13-term Henderson �lter exaggerates short-term cyclical behavior

(Schips and Stier, 1995). The 17-term Henderson �lter is the shortest that

does not result in a signi�cant peak beyond the �rst seasonal frequency in

the squared gain function of the trend extraction �lter.

2.2.3 Asymmetric Filters

Now we consider briey the asymmetric �lters used near the beginning

and end of a series that is not extended, or not fully extended, by forecasts

and backcasts. In X-12-ARIMA, the coe�cients of the asymmetric �lters

associated with the 3� 9 seasonal �lter are slightly modi�ed versions of the

�lters in X-11 and X-11-ARIMA. The modi�cations were done to obtain �l-

ters that are derivable from an unpublished optimization principle developed

by Musgrave (1964) that is detailed in Appendix A. There it is explained

that the asymmetric replacements for both the 3� 9 seasonal �lter and the

Henderson �lters are determined by values chosen for a certain \noise-to-

signal ratio". For the Henderson �lters, the X-12-ARIMA user can change

this ratio to obtain di�erent asymmetric �lters. This is one of the program's

\rarely used options", intended for the researcher or specialist rather than

for the general user. An unpublished formula of M. Doherty for the exact

solution of Musgrave's optimization (given as (A.3) in Appendix A) made

it easy for us to implement both this option and the option to allow the

user to specify Henderson �lters of any odd length (replaced by appropriate

asymmetric �lters near the ends of the series).

X-12-ARIMA can produce a smoothed version (\trend") of a nonseasonal

series through application of any of its Henderson trend �lters directly to the

input series, or to the series modi�ed by regression preadjustments (if, for
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example, there are outliers).

2.3 The Pseudo-Additive Decomposition

The pseudo-additive decomposition has the form

Yt = Tt (St + It � 1) = Tt (St � 1) + TtIt:

The algorithm for its calculation is summarized in Figure 3. According to

M. Baxter of the U.K. O�ce for National Statistics, where it has been used

for almost 20 years, this procedure was developed for seasonally adjusting

nonnegative time series that have quite small, possibly zero values in the

same month or months each year. Such months have seasonal factors close

to 0 and dividing by such very small factors produces unsatisfactory results.

Adjustment of these months by subtraction of an estimate of Tt (St � 1) �

�Tt is more likely to give an estimate close to the trend of the series, because

Yt � 0. Agricultural products that are available only at certain times of

year can give rise to such series. So can institutional behavior such as the

shutdown of factories because of summer vacations, as the graph of an Italian

car production series in Figure 5 illustrates.

Figure 5 shows both the additive and the pseudo-additive adjustments of

recent years of this series. The �rst impression might be that the additive

adjustment is reasonable except in August of the last year. In this month,

the additively adjusted series incorrectly suggests that a very low level of pro-

duction, essentially unchanged from the two preceding Augusts, represents a

substantial increase. The pseudo-additive adjustment provides a more plau-

sible, neutral value for this month. It also presents the Augusts of 1989

and 1990 as having signi�cantly increased production, which they do have

relative to other Augusts, a feature not indicated as clearly by the additive

adjustment. However, when we calculated the revisions history diagnostics

(presented in Section 3.2 below) for both adjustments of this series, the re-

sults (not given in this paper) showed that the pseudo-additive adjustments

of Augusts are much more likely than the additive adjustments to experi-

ence large revisions as future data are added to the series. (Multiplicative

adjustments are more volatile still and give implausible adjustments.)

It is an unusual aspect of the pseudo-additive decomposition that the ad-

justment quantities removed by the adjustment operation are not the level-

independent quantities St; as in the other decompositions, but are instead the

level-dependent quantities Tt (St � 1), see the steps (v) in Figure 3. Thus,

di�culties in estimating Tt at the ends of series (see Section 3.2) can be

expected to increase the variability of the adjustments there. This decompo-

sition can yield negative adjustments for nonnegative series.
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Figure 5. Italian Car Production with Additive and Pseudo-Additive

Seasonal Adjustments. In Italy August is the main month for vacationing,

and the resulting very low levels of car production make this series unsuitable

for multiplicative adjustment. The graphs show that the pseudo-additive

adjustment more accurately reects the increased production in August of

1989 and 1990. Also, unlike the additive adjustment, the pseudo-additive

adjustment does not suggest that the very low August 1993 value, which

di�ers little from the August 1991-92 values, represents a substantial increase.

2.4 Extracting Regression-E�ect Components from

the Irregulars

The concern in this section is with the estimation of calendar e�ects and

other e�ects by means of regression models for the irregular component.

Trading day e�ects are estimated this way in X-11 and X-11-ARIMA. More

general regression modeling of the irregular component is possible in X-12-

ARIMA, which o�ers Easter holiday and other calendar-e�ect regressors, as

well as indicator variables to identify extreme irregulars and diminish their

inuence when other regression e�ects are estimated. User-de�ned regression

models can also be estimated. Alternatively, X-12-ARIMA can estimate all

of these e�ects by means of regARIMA models for the observed time series.

This latter approach has important advantages, which we elaborate below,

for making inferences about the regression e�ects. Our decision to retain

and enhance the older approach of modeling the irregulars was motivated by

its historical success, by practical considerations mentioned below, and by
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the requests of statistical agencies and central banks in di�erent countries

who wish to be able to estimate their own country-speci�c working day and

holiday e�ects in this way.

The irregulars series, being the residual component after deseasonaliza-

tion and detrending, is a natural series from which to estimate further com-

ponents. Being an almost uncorrelated series, it has the appealing simplicity

of being a candidate for ordinary least squares (OLS) regression estimation of

additional components. There is a complication, however: its deseasonalized

and detrended nature implies that regression models for the irregulars should

also be deseasonalized and detrended. In Section 2.4.1 we illustrate how this

is done for a natural model of trading day e�ects. We obtain thereby both

a derivation of the trading day model of Young (1965) used by X-11 and

X-11-ARIMA, and also a derivation of X-12-ARIMA's default regARIMA

regression model for trading day e�ects estimated from the logarithms of the

observed time series. It is an important feature of this model that the e�ect

of month-length is known in advance and does not require estimation. The

estimation of other calendar e�ects from the irregulars is discussed briey in

Section 2.4.2.

2.4.1 Trading Day E�ects and Young's Model

We begin with a brief explanation of trading day e�ects. In addition

to seasonal e�ects, monthly time series that are totals (\ows") of daily

economic activities are often inuenced by the weekday composition of the

month. The presence of such an e�ect is revealed when the series values for

a given calendar month depend in a consistent way over time on which days

of the week occur �ve times in the month. With retail grocery sales, for ex-

ample, there is usually lower volume on Mondays, Tuesdays and Wednesdays

than on days later in the week. Thus sales in March, say, will be relatively

lower in a year in which March has an excess of early weekdays and higher

when March has �ve Fridays and Saturdays. To a lesser extent, series of

\stocks" measured on the same day each month, such as inventories or un-

�lled orders as of the last day of the month, are sometimes sensitive to the

day of the week on which their value is obtained. Finally the average daily

e�ect in ow series can give rise to a length-of-month e�ect. Because the

length of February is not the same every year, this e�ect is not completely

absorbed by the seasonal component. The residual e�ect left in Februaries

is called the Leap Year e�ect.

Recurring weekday composition e�ects in monthly (or quarterly) eco-

nomic time series are called trading day e�ects. Flow trading day e�ects have

been discussed by Young (1965), and stock trading day e�ects by Cleveland

and Grupe (1983) (see also Bell (1984) and Chen and Findley (1996b)). Like
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seasonal e�ects, trading day e�ects can make it di�cult to compare series

values across months or to compare movements in one series with move-

ments in other series. For this reason, when estimates of trading day e�ects

are statistically signi�cant, they are usually adjusted out of the series when

seasonal adjustment is performed. In this adjustment context, they form a

fourth decomposition component, the trading day component.

To obtain a model for trading day e�ects in monthly ow series, suppose

that the j-th day of the week has e�ect �j, where j = 1 designates Monday,

j = 2 Tuesday, : : : ; j = 7 Sunday. Then if Djt denotes the number of

occurrences of day j in month t, the cumulative e�ect for the month will beP7
j=1 �jDjt. Set �� =

P7
j=1 �j=7 and Nt =

P7
j=1Djt, the length-of-month t:

Because
P7

j=1(�j � ��) = 0, we have

7X
j=1

�jDjt = ��Nt +
7X

j=1

(�j � ��)Djt = ��Nt +
6X

j=1

(�j � ��) (Djt �D7t) ; (1)

a decomposition into a length-of-month e�ect and the net e�ect of the daily

contrasts (�j � ��). Replacing Djt in the center expression of (1) by Djt � 4

changes nothing and makes it clear that this second component is equal to

the sum of the (�j � ��) for those weekdays j that occur �ve times in month t.

We shall obtain a deseasonalized and level-neutral version of (1) by removing

calendar month means.

The monthly calendar repeats itself over any 28-year cycle (until the year

2100 when the 29th of February is omitted). Consequently, the variables Djt

are periodic with period 336 (= 12�28) months, and the calendar-month

means (1=28)
P28

k=1Dj;t+12k have the same value for all t and j. It follows

that the 28-year calendar month means of the di�erence variables Djt �D7t

on the right in (1) are 0. This implies that the �nal expression in (1) involving

these di�erences has a seasonal component of 0 and also a level component

(336-month mean) of 0. Thus the seasonal and level components of (1) reside

in the calendar month means of ��Nt. Since Nt+48 = Nt, these are given by

��N �

t with N�

t = (1=4)
P4

k=1Nt+12k. How these components are removed from

the model depends on the type of seasonal decomposition used to obtain the

irregulars.

For the usual case of a multiplicative decomposition, we then deseasonalize

and detrend the trading day e�ect by dividing (1) by ��N�

t . Setting �j =

(�j=��)� 1, this yields

Nt

N�

t

+
6X

j=1

�j

 
Djt �D7t

N�

t

!
=

P7
j=1 (�j + 1)Djt

N�

t

: (2)

This is the formula for trading day e�ects given without derivation in Young

(1965). With Ît denoting a preliminary estimate of the irregular component,
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the X-11 program and its direct descendants estimate �1; :::; �6 (and thus

�7 = �
P6

j=1 �j) by the ordinary least squares (OLS) �tting of the regression

model

N�

t Ît �Nt =
6X

j=1

�j (Djt �D7t) + et: (3)

In X-12-ARIMA, the analogue of (3) for the additive decomposition is

obtained by subtracting ��N�

t from (1). This yields

Ît = �0(Nt �N�

t ) +
6X

j=1

�j (Djt �D7t) + et; (4)

where now �0 = �� and �j = �j � �� for 1 � j � 6: Thus, in the additive

case, seven coe�cients must be estimated instead of six. In X-11 and X-11-

ARIMA, the regressor Nt � N�

t is not used. (A. Young has told us that he

agrees that X-11 should have used (4).) For the pseudo-additive decomposi-

tion, letting �N = (1=48)
P48

k=1Nt+k = 30:4375 (the average month length),

it can be shown that deseasonalization and detrending lead to trading day

factors of the form 1 + (Nt �N�

t )=
�N +

P6
j=1 �j (Djt �D7t) = �N .

Finally, to motivate the regARIMA regression model considered in Sec-

tion 4 for logarithms of the observed series, we need the trading day factor

formula for the log-additive decomposition. Taking the logarithm on the left

in (2) and using log (1 + x) � x, one obtains

log

8<
:1 + Nt �N�

t

N�

t

+
6X

j=1

�j

 
Djt �D7t

N�

t

!9=
; � Nt �N�

t

N�

t

+
6X

j=1

�j

 
Djt �D7t

N�

t

!
:

(5)

The summation on the right in (5) has 28-year-calendar-month means equal

to zero, and thus has no seasonal or trend. Hence, it can be taken as the

regression expression for trading day e�ects in the additive irregular com-

ponent of the logs of the time series being adjusted. Exponentiating, using

ex � 1 + x, and setting �
0

j = �j= �N , we obtain both an exact and an approx-
imate trading day factor formula for the log-additive case,

exp

 
Nt �N �

t

N�

t

!
exp

8<
:

6X
j=1

�j

 
Djt �D7t

N�

t

!9=
;

�
Nt

N�

t

exp

8<
:

6X
j=1

�0

j (Djt �D7t)
�N

N�

t

9=
; : (6)

The approximating second expression, further simpli�ed by treating �N=N�

t

as if it were equal to 1.0, de�nes X-12-ARIMA's default regARIMA model
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factors for trading day e�ects in the logarithms of the observed time series.
(See (14) in Section 4.)

There is an alternative to the deseasonalization and detrending approach
illustrated above that is most appealing with additive decompositions. This
is the \matched �ltering" procedure used for the trading day regression in

the SABL seasonal adjustment program, described in Cleveland and Devlin
(1982) and Cleveland (1983). In this procedure, the \irregular �lter" is ap-
plied to the regressors Djt in (1) prior to the irregulars series being regressed
on them. (The irregular �lter corresponds to applying all of the linear opera-
tions of Figure 3 used to calculate the irregular component of a series.) Since

this is obviously another way to deseasonalize and detrend the trading day
e�ect, this may accomplish much the same thing as the procedure discussed
above. The matched �ltering approach is also plausible when an additive
decomposition is obtained for a transformed version of the original series, as
in the log-additive case. It is unclear how matched �ltering applies to the
multiplicative or pseudo-additive decompositions.

2.4.2 Other Regressors and Robusti�cation of the Regressions

against Additive Outliers

Since the early 1970's, the versions of the X-11 program used at the Census
Bureau also obtained estimates of the e�ects on retail sales of Easter and of
the moving U.S. holidays Labor Day and Thanksgiving. Easter e�ects, for
example, can increase retail sales of clothing in the week or so prior to Easter,

or decrease factory shipments in certain industries a few days before Easter.
(The X-11 procedure for estimating Easter e�ects is detailed in Chen and
Findley (1996a)). X-11-ARIMA/88 estimates an Easter e�ect from the series
of irregulars using a di�erent procedure described, in Dagum et al.(1988). In
X-11 and X-11-ARIMA/88, the trading day and holiday e�ects are estimated

iteratively rather than simultaneously.
In X-12-ARIMA, these e�ects can be estimated simultaneously from the

irregulars. With such a diverse set of regressors, however, the deseasonal-
ization and detrending procedure exempli�ed above can lead to nonlinear

regression models (Chen and Findley 1996b). These can sometimes be lin-

earized easily. (For example, the approximation in (5) is a linearization.)
The coe�cient estimates can be protected against the e�ects of extreme ir-
regulars by means of a procedure like the one discussed in Section 4 and
Appendix B.

Finally, X-12-ARIMA allows user-de�ned regressors in the irregulars re-

gression. These regressors may need to be deseasonalized and detrended
before being input to the program.
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2.4.3 Model the Irregulars or Model the Original Series?

Instead of modeling the irregulars series, one can model the original series,
as we discuss in Section 4. This has important advantages for making statis-
tical inferences about calendar and other regression e�ects. Implicit in the

use of ordinary least squares regressions and the associated F-tests of signif-
icance is the assumption that the irregular component is a series of constant
variance, independent variates. Rather frequently (with 14 of 71 series in the
trading day modeling study described in Chen and Findley 1993, 1996b), the
regression F-statistic from a regression model of the irregulars has a spuri-
ously signi�cant value in tests of the null hypothesis of no e�ect even at the

:01 level of signi�cance|an indication that this implicit assumption is often
not adequately satis�ed. In fact, some autocorrelation is typically found in
the irregulars: the sample autocorrelations between irregulars a year apart
are almost always negative and larger in magnitude than all other sample
autocorrelations (often being close to �0:2). Also, it is clear from the trend

�lter gain functions that X-11's relatively short term trends cannot fully
capture long term correlation in the data if it exists. Additionally, there is
heteroskedasticity near the ends of the irregulars series because of the time-
varying asymmetric �lters used to obtain the decomposition near the ends
of the series being adjusted. To detect a spuriously signi�cant F-statistic,

the spectrum and sliding spans diagnostics discussed in Section 3 below can
be used as can the regARIMA model diagnostics that will be discussed in
Section 4.2.

One might expect that estimates of calendar and other regression e�ects
would also be better when these come from regARIMAmodels, both because

these models account for the correlation structure of the observed series, and
because they model the e�ects directly rather than as a residual component
identi�ed after seasonal and trend estimation. We have not found this to be
universally true, however. In Section 5.3 we shall show how out-of-sample
forecasting performance can be used to demonstrate the superiority, infe-

riority, or rough equivalence of calendar e�ect estimates from regARIMA
models versus those from OLS regression models of a preliminary irregular
component.

The better inference properties and the typically equivalent or better
performance of estimates from regARIMA models lead us usually to prefer
using a regARIMA model of the original series to estimate regression e�ects.

However, there are some series that cannot be modeled well by regARIMA
models due, for example, to frequent changes in variability or to erratic
trend movements over the course of the series that require more sophisticated
detrending procedures than di�erencing. Finally, many people worldwide
who are responsible for producing seasonal adjustments do not have the
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necessary training to develop regARIMA models for their series.

X-12-ARIMA provides the diagnostic tables of X-11 and X-11-ARIMA, as
well as the M1{M11 quality control statistics of X-11-ARIMA. It also has im-
portant additional diagnostics, including spectrum estimates for the presence

of seasonal and trading day e�ects (see Section 3.1), and the sliding spans and
revisions history diagnostics of the stability of seasonal adjustments (see Sec-
tion 3.2). The sliding spans and revisions histories are directly interpretable,
whereas M1{M11 are indirect measures, in some cases very indirect, of data
features known to be troublesome for the X-11 methodology. However, most
of the M1{M11 statistics can be calculated for short time series, something

impossible for the current stability diagnostics of X-12-ARIMA.

3.1 Using Spectrum Estimates to Detect Seasonal Ef-

fects and Flow Trading Day E�ects

Sensitive diagnostics are sometimes needed to determine if seasonal or
trading day e�ects are present in a series. This is especially true for detecting
residual e�ects in a series that has already been adjusted for seasonal and
trading day e�ects. For a series adjusted by direct application of X-12-
ARIMA, residual seasonality can result from inadequacies in the adjustment

procedures chosen, or from di�cult-to-estimate seasonal e�ects in the series,
for example, highly variable e�ects. With an indirectly adjusted aggregate
series (say a national series that is a sum of component regional series), whose
adjustment is obtained from its component series, it can happen that some of
the component series are not adjusted for one or both of seasonal and trading

e�ects, either because the e�ects are not detectable or because they are not
reliably estimable in these components. This can leave residual e�ects.

As seasonal and calendar e�ects are approximately periodic, it is natural
to use spectrum estimation to detect their presence. The period that de�nes
seasonal e�ects is one year. Thus, in monthly series, seasonal e�ects can be

discovered through the existence of prominent spectrum peaks at any of the
frequencies k=12 cycles per month, 1 � k � 6: In quarterly series the relevant
frequencies are 1/4 and 1/2 cycles per quarter.

Monthly trading day e�ects have a period of 28 years (336 months). This
long period leads to an overabundance of frequencies potentially associated
with trading day e�ect peaks, see McNulty and Hu�man (1989). However,

Cleveland and Devlin (1982) demonstrated, for ow series, that the most sen-
sitive frequencies will typically be .348 cycles/month and .432 cycles/month.
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The empirical experience of W.P. Cleveland at the Federal Reserve Board
showed that peaks at the biweekly-period alias-frequency .304 cycles/month
(:304 = 1 � 2� :348) are also useful indicators of a trading day e�ect.

Whenever seasonal adjustment is done (with or without trading day ad-
justment), X-12-ARIMA automatically estimates two spectra: (1) the spec-

trum of the month-to-month di�erences of the adjusted series modi�ed for
extreme values from X-11 output table E2 (or of the �rst di�erences of loga-
rithms of this series with a multiplicative adjustment); and (2) the spectrum
of the �nal irregular component adjusted for extreme values, from output
table E3. First di�erencing is a crude detrending procedure that is usually

adequate to enable the spectrum estimate to reveal signi�cant seasonal and
trading day e�ects. The program compares the spectral amplitude at the
seasonal and trading day frequencies noted above with the amplitudes at the
next lower and higher frequencies plotted. If these neighboring amplitudes
are smaller by a margin that depends on the range of all spectrum ampli-
tudes, then plots of the estimated spectra are automatically printed, together

with a warning message that gives the number of \visually signi�cant" peaks
found at seasonal or trading day frequencies.

The best known spectrum estimator for detecting non-random periodic
components is the periodogram (see pp. 390{415 of Priestley (1981) for a
very informative discussion). For a series xt; 1 � t � N , the periodogram, in

decibel units, has the formula 10 log10

�
2

N

���PN
t=1 xte

i2�t�
���2� ; 0 � � � :5. (At

the frequencies � = 2�n=N; 1 � n � [N=2]; lettingA� andB� denote the least
squares estimates of the coe�cients of the regression of xt on A cos 2��t +

B sin 2��t, the periodogram is equal to 10 log10
n
N

2
(A2

� +B2
�)
o
, see p. 395 of

Priestley, 1981). The periodogram is one of the two spectrum estimators in
X-12-ARIMA, the other being the autoregressive spectrum estimator, which
in decibel units has the form

10 log10

8><
>:

�2m

2�
���1�Pm

j=1 cje
i2�j�

���2
9>=
>; ; 0 � � � :5: (7)

The coe�cients cj are those of the least squares regression of xt � �x on

xt�j � �x; 1 � j � m, with �x = N�1
PN

t=1 xt, and �2m is the sample variance
of the resulting regression residuals. For a discussion of this estimator, see
pp. 600{612 of Priestley (1981). The default spectrum estimator in
X-12-ARIMA usually uses m = 30, as in the BAYSEA seasonal adjustment
program (Akaike 1980 and Akaike and Ishiguro 1983). While this estimate
is somewhat less sensitive to the presence of periodic components than the

periodogram, its graphs are much more stable under slight changes in the
data window used or in the set of frequencies chosen for its evaluation. The
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radian frequencies used in the spectrum graphs produced by X-12-ARIMA
are � = k=120; 0 � k � 60, except that the three trading day frequencies
.304,.348, and .432, whose spectral amplitudes are plotted with a T , are used
in place of their closest neighbors of the form k=120. The amplitudes at the
seasonal frequencies 1/12, 2/12,...,6/12 are plotted with an S. Examples will

be given shortly.
The spectrum of any span of data within the series can be estimated.

The default span for the automatically calculated spectrum estimates is the
most recent eight years of data if the series is at least this long. Data-users
are normally most concerned about recent data, and eight years of monthly

data are usually enough to achieve reliable estimates of trading day e�ects.
When the pattern of the e�ects changes substantially over the course of the
series, diagnostics calculated from the full series can lead to decisions that
are inappropriate for the recent data, as we now demonstrate.

Figure 6 shows X-12-ARIMA's output spectrum plots of (7) from the
irregular component of the construction series of single- and multi-unit hous-

ing starts (January, 1964 to December, 1982) from the Midwest region of
the United States, after seasonal adjustment but without trading day ad-
justment. The spectrum of Figure 6a is from the full irregulars series. It
shows a strong peak at the main trading day frequency .348 and a very slight
peak at the frequency .304. The spectrum of Figure 6b, which is calculated

from the last eight years of the irregulars series, has no trading day peaks.
The conclusion is that there is not a signi�cant trading day e�ect late in this
series. This conclusion was con�rmed by model selection diagnostics (Chen
and Findley, 1996b).

In a purely diagnostic mode, X-12-ARIMA can calculate a spectrum esti-

mate of the �rst di�erences of an input time series (or of its logarithms) and
print a spectrum plot without doing any further processing. This feature was
designed for use at the Census Bureau in a once-a-year inspection looking
for residual seasonal and trading day e�ects if major aggregate series that
are compiled from component series, some of which might not be seasonally

adjusted.

3.2 Diagnostics for the Stability of the Seasonal Ad-

justments and Trends

A seasonal (and trading day and holiday) adjustment that leaves de-
tectable residual seasonal and calendar e�ects in the adjusted series is usually
regarded as unsatisfactory. Even if no residual e�ects are detected, the ad-

justment will be unsatisfactory if the adjusted values (or important derivative
statistics, such as the percent changes from one month to the next) undergo
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Figure 6. Graphs of the AR Spectrum (7) of the Irregulars of North

Central Housing Starts from (a) the Full Series and (b) Its Last Eight Years.

The dominant peak at the second trading day frequency in (a) does not

appear in (b). Hypothesis testing con�rms the lack of a signi�cant trading

day e�ect in the last eight years.

large revisions when they are recalculated as future time series values become
available. Frequent, substantial revisions cause data-users to lose con�dence
in the usefulness of adjusted data. Indeed, such instabilities in the adjust-
ments should cause the producers of adjustments to question their meaning.

Unstable adjustments can be the unavoidable result of the presence of highly
variable seasonal or trend movements in the series being adjusted. They can,
however, also be due to inappropriate option speci�cation in the software
used to produce the adjustments, in which case they are avoidable.
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3.2.1 Sliding Spans

X-12-ARIMA includes two types of stability diagnostics, sliding spans and
revision histories. The sliding spans diagnostics display, and provide sum-
mary statistics for, the di�erent outcomes obtained by running the program

on up to four overlapping subspans of the series. For each month that is
common to at least two of the subspans, these diagnostics analyze the dif-
ference between the largest and smallest adjustments of the month's datum
obtained from the di�erent spans. They also analyze the largest and small-
est estimates of month-to-month changes and of other statistics of interest.
Several uses of these diagnostics were demonstrated in Findley et al. (1990).

It was shown how they improve upon, or complement in important ways,
earlier diagnostics for (i) determining if a series is being adjusted adequately,
(ii) for deciding between direct and indirect adjustments of an aggregate
series, and (iii) for con�rming option choices such as the length chosen for
the seasonal �lter or showing that other option choices must be tried. We

refer the reader to this article for examples of these uses and others. Batti-
paglia and Focarelli (1995) performed simulation experiments and concluded
that stability statistics from sliding spans were signi�cantly more correlated
with adjustment accuracy than the Q-statistic of X-11-ARIMA, which is a
weighted average of the M1-M11 statistics. Other comparisons between slid-

ing spans diagnostics and Q can be found in Findley and Monsell (1986) and
Findley et al. (1990).

3.2.2 Revision Histories

The second type of stability diagnostic in X-12-ARIMA considers the revi-
sions associated with continuous seasonal adjustment over a period of years.
The basic revision calculated by the program is the di�erence between the

earliest adjustment of a month's datum obtained when that month is the �nal
month in the series and a later adjustment based on all future data avail-
able at the time of the diagnostic analysis. Similar revisions are obtained for
month-to-month changes, trend estimates, and trend changes. Sets of these
revisions, calculated over a consecutive set of time points within the series,

are called revisions histories. We will show how they can suggest the number
of years of forecasts to use in forecast extension of the series and how they
indicate whether the (�nal) Henderson trend estimates (from output table
D12) are stable enough to serve as an alternative to the seasonal adjust-
ments. (The Australian Bureau of Statistics prefers to publish these trend

estimates instead of seasonal adjustments, because the trend estimates have
fewer changes of direction and therefore seem more interpretable to data-
users, especially when the seasonal adjustments are quite volatile. For the
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same reason, some other statistical agencies are also considering publishing
the Henderson trends.)

To describe the variety of revisions that can be obtained, we introduce
precise notation. Suppose a set of options has been chosen for the application
of X-12-ARIMA to the unadjusted time series Yt; 1 � t � N: For any of these

months t, and any integer u in the interval t � u � N , let Atju denote the
seasonally adjusted value for time t obtained with these options when only the
data Yt; 1 � t � u are used in their calculation (Yu+1; :::YN are withheld). For
given t, as u increases these adjustments converge to a �nal adjusted value.
When the 3 � m seasonal �lter is used, convergence is usually e�ectively

reached in about 1 +m=2 years. The largest revisions tend to occur when u
is the same calendar month as t; speci�cally u = t + 12; t + 24; : : :, and the
next to largest changes a month later, u = t + 1; t + 13; t + 25; : : :. (In the
additive decomposition case, the largest weights in the seasonal adjustment
�lter combining all of the seasonal adjustment calculations are at lags 1, 12,
13, 24, 25,... .) The adjustment Atjt obtained from data through time t is

called the concurrent adjustment. It is usually the �rst adjustment obtained
for month t. We call AtjN the most recent adjustment. In the case of a
multiplicative decomposition, the revision from the concurrent to the most
recent adjustment for month t is calculated by the program as a percentage
of the concurrent adjustment,

RA
tjN = 100 �

AtjN �Atjt

Atjt

:

For given N0 and N1 with N0 < N1, the sequenceR
A
tjN ; N0 � t � N1; is called

a revisions history of the seasonal adjustments from time N0 to time N1. We
suggest that N0 be at least as large as the e�ective length of the seasonal �lter
used, 12(2 +m). It should de�nitely be large enough for reliable estimation
of any trading day or holiday adjustments being performed.

Period-to-period percent changes,

�%Atju = 100 �
Atju �At�1ju

At�1ju

;

are often as important as the seasonal adjustments. X-12-ARIMA can pro-

duce revisions histories for them:

R�%A
tjN = �%AtjN ��%Atjt; N0 � t � N1:

The program also calculates the analogous quantities for �nal Henderson
trends Ttju and for their period-to-period percent changes �%Ttju. These

histories are denoted by RT
tjN and R�%T

tjN , N0 � t � N1: (Note: A slightly
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larger N0 is required for the trend revision histories, since the e�ective length
of the trend �lters is 1 or 2 years longer than that of the adjustment �lters;
see Bell and Monsell (1992)).

3.2.3 Two Applications of Revision Histories

We now present an example demonstrating how these histories can help
with decisions about what kind of forecast extension to use, if any, and

whether the Henderson trend is a practical alternative to the seasonal ad-
justments. To illustrate a variety of issues with a single example, we use a
series for which the �nal Henderson trend estimates and seasonal adjustments
have di�erent relative stability properties, depending on which feature of the
data is of interest. The series is construction starts of single- and multi-unit

dwellings (\housing starts") in the Southern region of the United States be-
ginning in January, 1962 and ending in August of 1993. It is adjusted for
trading day e�ects as well as seasonal e�ects. For the latter, the X-11 de-
fault options are used. The regARIMA model used for forecast extension
includes a regression variable to make an adjustment for an additive outlier

(see Section 4) in December, 1989. Figure 7 is a graph of the series from
January 1981, along with the seasonally adjusted series and �nal Henderson
trend obtained using 42 month forecast extension. The trend is signi�cantly
smoother and more appealing to the eye than the seasonal adjustment. The
revisions histories begin in January of 1981 end in December of 1989. This
ending date, three and a half years before the most recent datum, was cho-

sen so that all revisions would be �nal or close-to-�nal revisions. Thus they
are revisions of similar type, so it is reasonable to consider their average
magnitudes.

We start by examining the e�ect of the length of the forecast extension
on the magnitudes of

���RA
tjN

��� and ���RT
tjN

���. The cases considered are no forecast

extension, 12 month forecast extension, and 42 month forecast extension, the
last length being the e�ective half-length of the 3 � 5 seasonal �lter used.
Bobbitt and Otto (1990) found that the use of such \full forecast extension"
can result in smaller average revisions between concurrent and �nal seasonal
adjustments than shorter forecast extension. Table 1 shows that the average

magnitudes of the RA
tjN of the housing starts series, denoted avg

���RA
tjN

���, follow
this pattern. The table also includes counts of large revisions, which we have
de�ned to be revisions of magnitude greater than four percent (this is more
than twice the average magnitude of the seasonal adjustment revisions).

For the data-user interested only in the levels of the seasonally adjusted

series, these results suggest that the adjustments obtained with the aid of a 42
month forecast extension are preferable to the other adjustments considered
and to the Henderson trends.
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Figure 7. Southern Housing Starts with Seasonal Adjustment and Asso-

ciated Trend.

Table 1. Average Absolute Percent Revisions and Numbers of Extreme

Revisions over (1/1981-12/1989) for Seasonal Adjustments and Henderson

Trends of Southern Housing Starts (1/1962-8/1993) Obtained Using

Di�erent Numbers of Forecasts

No.Forecasts avg
���RA

tjN

��� avg
���RT

tjN

��� No.
���RA

tjN

��� > 4:0% No.
���RT

tjN

��� > 4:0%

0 2.1 3.8 17 33
12 1.8 3.1 10 33
42 1.5 3.0 2 46

We now consider month-to-month changes. The graphs of �%Atjt and
�%AtjN are given in (a) of Figure 8 and the graphs of �%Ttjtand �%TtjN
in (b). (The quantities graphed were obtained using 42 month forecast ex-
tension.) The di�erent scales in Figures 8(a) and 8(b) make clear that the
month-to-month changes in trend are often much smaller. The revisions,

whose magnitudes are indicated by the lengths of the vertical lines con-
necting the concurrent and most recent estimates, are also smaller for the
month-to-month changes in trend. For the di�erent forecast leads 0, 12, 42,
the values of avg

���R�
%A

tjN

���and avg
���R�

%T
tjN

��� are 2.5, 2.3, 2.2 and 1.7, 1.4, 1.4
respectively.

There is only one visible way in which the revisions of �%Ttjt are less
appealing than the revisions of �%Atjt: about twice as often for �%Ttjt, the
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(a) Seasonal Adjustment Changes from the Previous  Month.
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(b) Trend Changes from the Previous Month.

Figure 8. Concurrent and Most Recent Estimates of Percent Changes

from the Previous Month in the Seasonal Adjustment (a) and Trend (b) of

Southern Housing Starts. The connecting vertical lines show the size of each

revision. (Note that the scales of (a) and (b) are di�erent). When these

lines cross the level zero axis, the revision of the concurrent value includes a

change of sign, an unfavorable situation.
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most recent estimate has a di�erent sign from that of the initial estimate.
Such revisions, which change month-to-month increases to decreases or de-
creases to increases, are irritating for many data-users. In Figure 8, the
vertical connecting lines cross the horizontal axis at level 0 when there is
a change in sign, making such changes easy to see. Both the number of

sign changes and the sizes of the revisions are much smaller for the trends
obtained after a 3-month wait, Ttjt+3: compare Figure 9, which graphs the
revisions from �%Ttjt+3 to �%TtjN with Figure 8(b). (The seasonally ad-
justed month-to-month changes obtained with a three-month delay do not
have improved revisions and are not graphed.)

The SABL seasonal adjustment program Cleveland et al. (1981) was the
�rst to calculate revisions series. SABL produces a history of the di�erences
between the seasonal adjustments obtained using seasonal factors projected
a calendar year in advance and the concurrent seasonal adjustments. (Pro-
jected factor adjustments are much less used now than when SABL was
created, having been displaced by concurrent adjustments, because the lat-

ter generally have smaller revisions, see Dagum (1987) for a survey of the
relevant literature. X-12-ARIMA can also calculate revisions from projected
factor adjustments to most recent adjustments so that users can compare
these with the revisions of concurrent adjustments.)

We now describe the time series modeling and model selection methodolo-

gies of X-12-ARIMA, beginning in Section 4.1 with an overview of regARIMA
models and the regressors for them that are included in X-12-ARIMA. Section
4.2 indicates how the program uses regARIMA models to identify automati-
cally additive outliers and level shifts. Section 4.3 deals with model selection.
First, log-likelihood-based model selection criteria are presented in Section

4.3.1, along with the way we use one such criterion, Akaike's AIC, for au-
tomatically deciding whether or not a trading day e�ect is present. Section
4.3.2 shows how the program's ability to \recreate history" is exploited for
model selection, especially by withholding data, forecasting these data, and
analyzing the resulting out-of-sample forecast errors.

4.1 Overview of regARIMAModeling in X-12-ARIMA

Given a time series Yt to be modeled, it is often necessary to take a
nonlinear transformation of the series, yt = ft(Yt), to obtain a series that can
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Figure 9. Three-Month-Lagged and Most Recent Estimates of Percent

Changes from the Previous Month in the Trend. Comparison with Figure

8(b) shows that the trend-change estimates calculated three months after the

concurrent estimates have much smaller revisions than the latter, and fewer

changes of sign after revision.

be adequately �t by a regARIMA model. For example, if Yt is a positive-
valued series with seasonal movements proportional to the level of the series,
one would usually take logarithms, or more generally,

yt = log
�
Yt

dt

�
= log Yt � log dt; (8)

where dt is some appropriate sequence of divisors. Possible divisors include

(i) deseasonalized and detrended length-of-month factors Nt=N
�
t from (6),

(ii) combined trading day and Easter holiday e�ect factors obtained from a
regression model of the irregular component of Yt (obtained from a prelimi-
nary run), and (iii) user-de�ned adjustment factors that estimate the e�ects
of unusual economic events. X-12-ARIMA can calculate the transformed se-

ries (8) for choices (i) and (ii) via user-speci�ed options, and for choice (iii)
by reading in the divisors from a user-speci�ed data �le.

The built-in transformations include a one-parameter family of power
transformations (modi�ed \Box-Cox" transformations),

y
(�)
t =

8>><
>>:

Yt=dt � = 1;

�2 +
h
(Yt=dt)

�
� 1

i
=� � 6= 0; 1

log (Yt=dt) � = 0;

; (9)
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which changes smoothly in � and preserves positivity if Yt=dt > 1:0. While
the program permits any value of � to be used for the purpose of obtaining
forecast and backcast extensions, to get regression preadjustments for a sea-
sonal adjustment decomposition in X-12-ARIMA, � must be 0 or 1. These
are the only values of � for which it is possible to isolate the e�ect on Yt of

regression components of yt.
Let B denote the backshift operator, Byt = yt�1. X-12-ARIMA can esti-

mate regARIMA models of order (p; d; q)(P;D;Q)s for yt: These are models
of the form

�p(B)�P (B
s) (1�B)d (1 �Bs)D

 
yt �

rX
i=1

�ixit

!
= �q(B)�Q(B

s)at; (10)

where s is the length of the seasonal period, s = 4 or 12. The polynomi-
als �p(z);�P (z); �q(z);�Q(z) with degrees p; P; q; and Q respectively have

constant terms equal to one. For example, if p � 1, we have �p(z) =
1 � �1z � � � � � �pz

p. These polynomials are constrained so that the ze-
roes of �q(z) and �Q(z) have magnitudes greater than or equal to one,
and (in the default estimation procedure) so that the zeroes of �p(z) and
�P (z) have magnitudes greater than one. Because at is assumed to be a
sequence of independent variables with mean 0 and constant variance �2a, it

follows from these constraints that wt = (1�B)
d
(1�Bs)

D
(yt�

Pr
i=1 �ixit)

is a covariance stationary time series that satis�es the di�erence equation
�p(B)�P (B

s)wt = �q(B)�Q(B
s)at. Consequently, we can reexpress the

model (10) for yt as,

(1�B)
d
(1�Bs)

D
yt =

rX
i=1

�i
n
(1 �B)

d
(1�Bs)

D
xit
o
+ wt: (11)

This is a regression model with stationary ARMA errors wt for suitably

di�erenced yt. Its regressors result from applying the same di�erencing op-
erations to the xit: The model (11), together with an assumption that the
innovations at in the model for wt are i.i.d. N(0; �2), determine the likelihood
function that is maximized to estimate the regression coe�cients �i, �

2, and
the coe�cients of �p(B);�P (B

s); �q(B); and �Q(B
s). The default likelihood

in X-12-ARIMA is the fully exact Gaussian likelihood. To help circumvent
convergence problems in the numerical maximization (which occur rarely),
the approximating conditional Gaussian likelihood de�ned in Box and Jenk-
ins (1976) can optionally be used instead of the exact likelihood. There is also
a third option in which the likelihood is conditional for the autoregressive
parameters and exact for the moving average parameters (see Hillmer and

Tiao 1979). (These two alternative likelihoods do not constrain the zeroes of
autoregressive polynomials.)
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In model estimation, any of the ARMA coe�cients can be held at �xed
values, such as zero. The program produces asymptotic standards errors,
correlations, and t-statistics for the estimated coe�cients as well as con�-
dence intervals for forecasts. With the exception of the con�dence intervals,
these statistics remain valid with non-Gaussian data if the model form is

correctly speci�ed, see for example Hosoya and Taniguchi (1982).
The set of built-in regressors for monthly series is listed in Table 2. Ap-

plications using some of them are given in Section 5. As discussed in the next
section, the program has options to add automatically both additive outlier
(AO) and level shift (LS) regressors to the set of regression variables in the

model. In this way, the regARIMA coe�cient estimates and forecasts can
be made robust to some kinds of atypical data values and to sudden changes
in the level of the series. The user can optionally choose to have such auto-
matically identi�ed outliers and level shifts removed from the data, together
with speci�ed other regression e�ects, before the X-11 procedure outlined in
Figure 3 is applied. Through such preadjustments, the seasonal factors that

are used to adjust the original data can be shielded from distortion.
The extreme value treatments within the X-11-ARIMA procedure, which

are described fully in Dagum (1980) and nicely owcharted on p. 91 of Hylle-
berg (1986), provide some protection against additive outliers for the seasonal
factors. However, the trend �lters applied in the course of obtaining the sea-

sonal factors cannot follow sudden, large level shifts. Thus, estimation of
level shifts together with preadjustment for them, as illustrated in Figure
2, is an especially important capability of X-12-ARIMA. Other approaches
to treating sudden changes in level have been considered. Bruce and Jurke
(1996) compare X-12-ARIMA seasonal adjustments of series having pread-

justments for level shifts and additive outliers from regARIMA models with
seasonal adjustments obtained from a state space model that uses Gaussian-
mixture state- and observation-noise models to deal with disruptions to the
level of the series. They conclude that the regARIMA approach succeeds
more broadly.

4.2 Automatic Outlier Treatment

The automatic methods for identifying AO and LS outliers are stepwise
regression procedures based on work of Chang and Tiao (1983), see also Bell
(1983), Burman (1983), and Chang, Tiao, and Chen (1988). In the default

procedure, whose steps are listed in Appendix B, appropriate AO and LS
regressors are �t at (almost) all time points of the series (or of a chosen
subspan), and their corresponding t-statistics are compared against speci�ed
critical values. The default critical value is 3.3 for both regressor types. Such
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Table 2. Prede�ned Regression Variables in X-12-ARIMA

Regression e�ect Variable de�nition(s)

Trend Constant (1 �B)�d(1 �Bs)�DI(t � 1), where I(t � 1) =

n
1 for t � 1

0 for t < 1

1
Fixed Seasonal M1;t =

(
1 in January

�1 in December

0 otherwise

; : : : ; M11;t =

(
1 in November

�1 in December

0 otherwise
1
Fixed Seasonal sin(!jt), cos(!jt), where !j = 2�j=12, 1 � j � 6 (Drop sin(!6t) � 0)

Trading Day

(monthly or quarterly ow)
T1t = (no: of Mondays) � (no: of Sundays); : : : ; T6t = (no: of Saturdays) �

(no: of Sundays)

1
Length-of-Month

(monthly ow)
Nt� �N, where Nt = length of month t (in days) and �N = 30:4375 (average length

of month)

Leap Year

(monthly ow)
Nt �N�

t , where N
�

t = (Nt +Nt�12 +Nt�24 +Nt�36)=4
(Note: This variable is 0 except in February)

Stock Trading Day

(monthly stock)
T1;t =

(
1 ~wth day of month t is a Monday

�1 ~wth day of month t is a Sunday

0 otherwise

,

� � � ; T6;t =

(
1 ~wth day of month t is a Saturday

�1 ~wth day of month t is a Sunday

0 otherwise

,

where ~w is the smaller of w and the length of month t. For end-of-month stock
series, set w to 31.

2
Easter Holiday

(monthly or quarterly ow)
E(w; t) = 1

w
[no. of the w days before Easter falling in month (or quarter) t].

(Note: This variable is 0 except in February, March, and April (or �rst and second
quarter). It is nonzero in February only for w > 22.)

2
Labor Day

(monthly ow)
L(w; t) = 1

w
[no. of the w days before Labor Day falling in month t].

(Note: This variable is 0 except in August and September.)

2
Thanksgiving

(monthly ow)
TC (w; t) = proportion of days from w days after Thanksgiving through De-

cember 24 that fall in month t (negative values of w indicate days before
Thanksgiving).

(Note: This variable is 0 except in November and December.)

Additive Outlier at t0 AO
(t0)
t

=

n
1 for t = t0
0 for t 6= t0

Level Shift at t0 LS
(t0)
t

=

n
�1 for t < t0
0 for t � t0

Temporary Ramp, t0 to t1 RP
(t0;t1)
t

=

(
�1 for t � t0

(t� t0)=(t1 � t0) � 1 for t0 < t < t1
0 for t � t1

1The variables shown are for monthly series. Corresponding variables are available for quarterly series.
2The actual variable used for monthly Easter e�ects is E(w; t) � �E(w; t), where the �E(w; t) are the \long-run" (com-

puted over 38,000 years) monthly means of E(w; t) (nonzero only for February, March, and April). Analogous
deseasonalized variables are used for Labor Day and Thanksgiving e�ects, and for quarterly Easter e�ects.
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large critical values are appropriate because of the large number of regressors
to which individual signi�cance tests are applied. Automatic outlier identi�-
cation is, in this respect, di�erent from the model selection problem discussed
in the next subsection, where less stringent criteria are often used to include
other regressors.

4.2.1 Instabilities of Outlier Identi�cation

The set of automatically identi�ed outliers can change if the regressor
set or ARIMA model type is changed. For example, in series with a strong
date-of-Easter e�ect, Marches and Aprils are often identi�ed as outliers if no
regressors for this e�ect are included in the model, but not if such regres-
sors are used. A second source of instability in the composition of the set

of observations de�ned as AO or LS outliers is the use of stepwise regression
procedures based on speci�ed critical values. Regressors with t-statistic val-
ues just below the critical values can have their t-statistics increase above
the critical values as new data are added to the series over time. Conversely,
regressors can drop out of the set of identi�ed outliers as new data are added.

The printed output of X-12-ARIMA's automatic-outlier-identi�cation option
lists months whose AO or LS regressors are close to the critical values. This is
done to enable the user to consider in advance whether to include such regres-
sors in subsequent runs of the program. Instability is a problem with most
outlier detection and automatic model selection schemes. In the context of re-
gressor selection for independent observations, Breiman (1997) has proposed

some interesting although computationally expensive data-perturbation ap-
proaches to achieve more stable selections.

4.3 Model Identi�cation and Selection

X-12-ARIMA has an automatic ARIMA modeling option that is pat-
terned after the procedure of X-11-ARIMA/88. Under this option, the pro-
gram examines the �t of regARIMA models whose ARIMA structures are
those with a speci�ed set of orders (p; d; q)(P;D;Q)s: The default set con-
sists of the �ve models with nonseasonal orders (0 1 1), (0 1 2), (2 1 0), (0 2

2), and (2 1 2), and always the same seasonal order, (0 1 1)s, exactly as in
X-11-ARIMA/88. In X-12-ARIMA, the user can specify an alternative set
of models for consideration. Also, the user can specify regression variables
to be included in the model and can use built-in criteria to decide if trading
day, AO, and LS regressors should be included with any speci�ed regressors.

A �tted model whose estimated mean squared forecast error statistic and
Box-Ljung portmanteau statistic are below certain thresholds is considered
an acceptable model.
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For the situation in which none of the automatically tested models is ad-
equate, or where the user wishes to identify or check a model, X-12-ARIMA
has options to produce standard modeling diagnostics. For model identi�ca-
tion, the program provides the sample autocorrelations and partial autocor-
relations of the residuals obtained by doing OLS regression in (11),

(1�B)d (1 �Bs)D yt �
rX

i=1

�̂OLSi

n
(1�B)d (1 �Bs)D xit

o
:

For model checking, it produces the sample autocorrelations and partial au-

tocorrelations of the residuals from a �tted regARIMA model (estimates
of the at in (11)), together with associated portmanteau statistics and his-
tograms of residuals (see Box and Jenkins (1976), Abraham and Ledolter
(1983), Vandaele (1983), or Bell (1996)).

4.3.1 Log-Likelihoods, AIC and Automatic Trading Day E�ect

Modeling

Suppose there are competing regARIMA models whose diagnostics seem

adequate and that these models di�er in the choice of the ARMA model for
wt in (11), or in the choice of regressors other than AO and LS regressors, or
in the choice of transformations ft(Yt) of Yt. When the parameters in these
models have been estimated by maximizing the exact Gaussian likelihoods,
then X-11-ARIMA provides several log-likelihood-based model selection cri-

teria that can be used to select one of the models. Let the logarithm of the
maximized exact likelihood of a covariance stationary time series model for
(1�B)

d (1 �Bs)D ft(Yt); d + sD + 1 � t � N be denoted by L̂
f

d+sD+1;N .
This can be converted into the logarithm of a likelihood for Yd+sD+1; : : : ; YN
conditional on Y1; : : : ; Yd+sD, denoted by L̂ (YN ; : : : ; Yd+sD+1 j Yd+sD; : : : ; Y1),

by adding the log of the Jacobian determinant of the transformation yt =
ft(Yt); d+ sD + 1 � t � N ,

L̂ (Yd+sD+1; : : : ; YN j Y1; : : : ; Yd+sD) = L̂
f
d+sD+1;N +

NX
t=d+sD+1

log

�����dft (Yt)dYt

����� :
(12)

When d > 0 or D > 0, we are, in e�ect, treating the starting values
y1; : : : ; yd+sD as �xed.

Let m denote the number of free parameters estimated in the model. If

there are no coe�cient constraints in (11), then m = r+ p+ q + P +Q+ 1;
counting the coe�cients and the variance of at. The Akaike Information
Criterion statistic (AIC) for this model is de�ned by

AICN jd+sD = �2L̂ (Yd+sD+1; : : : ; YN j Y1; : : : ; Yd+sD) + 2m: (13)
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Given several competing models with the same d + sD, Akaike's minimum

AIC criterion states that the model with smallest AIC is the best of the
models for Yt. (See Akaike (1973), Findley (1985), and Brockwell and Davis
(1987) for technical details, and Findley and Parzen (1995) for historical
background.) X-12-ARIMA also calculates the small-sample version of AIC

derived in Hurvich and Tsai (1989), the Schwarz BIC statistic (Schwarz,
1978) and the Hannan and Quinn statistic (Hannan and Quinn, 1979). These
di�er from AIC in the replacement of the term 2m in (13) by 2m=f1 �
(m+ 1)=(N � d � sD)g; m log (N � d� sD), and 2m log log (N � d� sD) ;
respectively. These replacements are usually larger than 2m: Therefore these

other criteria are less tolerant than AIC of models with more coe�cients. (For
these criteria too, the smallest values of the statistic over a set of competing
models is used to determine a preferred model.)

Comparing di�erent transformations. Rather frequently, it is neces-
sary to compare regARIMA models whose data transformations ft(Yt) di�er.
The most common situation is the one in which two di�erent divisors dt are
used in the log transform (8), say dt = Nt=N

�
t and dt = 1 as in the next

subsection, or \subjective" and \objective" choices of dt as in Section 5.4.
The next most frequent situation is the one in which di�erent choices of �
are considered in (9), usually � = 0 and � = 1. The choice � = 0 suggests
that the seasonal adjustment decomposition should be multiplicative, � = 1
that it should be additive.

To help decide between two transformations, either the out-of-sample
forecast diagnostics described in Subsection 4.2.2 or one of the log-likelihood-
based criteria, such as AIC, can be used. In the case of choosing a power
transformation (9) with unrestricted � when the same ARIMA model type
is used with the di�erent �; the numbers of estimated parameters does
not change, so the latter criteria all prefer whichever � yields a larger log-

likelihood. In this situation, one can examine an interval of values and to
identify the � maximizing the log-likelihoods (12), see Ansley et al. (1977).
Although this procedure appears to yield reasonable results (Shulman and
McKenzie, 1988), the asymptotic distribution theory on which it rests has
not been veri�ed and, if valid, may require subtle arguments for its proof

when d > 0 or D > 0.

Deciding whether to adjust for trading day e�ects. We now describe
X-12-ARIMA's option for automatically determining if trading day regres-
sors should be included in the model (11), after the rest of the model has
been speci�ed (meaning ft; d;D; an ARMA model type for wt, and any other
regressors). The models with and without trading day regressors are esti-
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mated. In the default case for multiplicatively decomposed ow series, the
model with trading day regressors also uses the Leap Year e�ect preadjust-
ments dt = Nt=N

�
t , see (14) below, but the model without these regressors

does not. The AICs for the two models are compared, and the model with
the smaller AIC is chosen (for forecast extension and for estimating any re-

quested regression preadjustments).
As we indicated in Section 2.4.1 after (6), the default regARIMA trading

day model for a multiplicative decomposition of a seasonal monthly series Yt
has the form

(1 �B)d
�
1 �B12

�D (
log

�
N�

t

Nt

Yt

�
�

6X
i=1

�i (Dit �D7t)�
rX

i=8

�ixit

)
= wt

(14)

If there are only trading day regressors in the model, the second sum is
omitted. With �7 = �

P6
i=1 �i; the trading day factors obtained from (14)

have the form

Nt

N�
t

exp
6X

i=1

�i (Dit �D7t) =
Nt

N�
t

7Y
i=1

e�i(Dit�4): (15)

The alternative model with no trading day e�ects is

(1 �B)
d
�
1 �B12

�D (
log Yt �

rX
i=8

�ixit

)
= wt: (16)

Thus, f (Yt) = log Yt is used instead of ft (Yt) = log (N�
t Yt=Nt) in (14).

Our experience is that comparing the AICs of (14) and (16) to decide if a

trading day e�ect is present is substantially more reliable than X-11's F-test
of the hypothesis �1 = � � � = �6 = 0 in (3). As we mentioned in the �rst
paragraph of Section 2.4.3, in the empirical study summarized in Chen and
Findley (1996b), this F-test falsely indicated signi�cant trading day e�ects
in 14 of 71 series. The automatic procedure just described classi�ed these

14 series as not having estimable trading day e�ects, in agreement with the
forecast comparison procedure described next.

4.3.2 Historical Output for Comparing Models: Out-of-Sample

Forecasting Performance, AIC Histories

We return to the option discussed in Section 3.2 under which the program
recreates history. Recall that it performs a sequence of runs on increasing
spans of data within the series. Starting from an initial segment of the series,

the spans grow with each new run by the addition of one observation until
the full series is included.
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Out-of-sample forecasts. To obtain information about a model's fore-
casting performance, the available time series data outside each span can be
regarded as future data to be forecasted from a model �t to the span. These
forecasts can be compared to the actual series values or, for series values
identi�ed as outliers, to the outlier-adjusted values. As an option, the X-12-

ARIMA program calculates the resulting out-of-sample forecast errors and
stores them for later analysis, along with their accumulating sums of squares.
When forecast errors are available from two competing models, the sequence
of di�erences between the accumulating sums of squared errors can be an
e�ective model selection diagnostic, as we shall demonstrate in Section 5.3,

see also Chen and Findley (1996a,b). We now give a detailed description of
this diagnostic.

Assume we are interested in h-step(-ahead) forecasting of the time series
Yt; 1 � t � N . Suppose that a regARIMA model has been proposed for
the transformed series yt = f(Yt). Let N0 be a number less than N � h

which is large enough that the data yt; 1 � t � N0 can be expected to yield

reasonable estimates of the model's coe�cients. For each t in N0 � t � N�h,
let yt+hjt denote the forecast of yt+h obtained by estimating the regARIMA
model using only the data ys; 1 � s � t and by using this estimated model to
forecast h-steps from time t. Then the out-of-sample h-step forecast of Yt+h
is de�ned to be Yt+hjt = f�1(yt+hjt). We de�ne the associated forecast error

by et+hjt = Yt+h � Yt+hjt if all AO, LS and ramp regressors in the regARIMA
model for the full series y1; : : : ; yN have the value 0 at time t+h. Otherwise,
we de�ne et+hjt = f�1(�yt+h) � Yt+hjt, where �yt+h is obtained by subtracting
from yt+h all such regression e�ects. The main diagnostic calculated by
the program is the sequence of accumulating sums of squared out-of-sample

forecast errors,

SSh;M =
MX

t=N0

e2t+hjt; M = N0; : : : ; N � h: (17)

Suppose there are two competing models, Model 1 and Model 2, with forecast

errors e
(1)

t+hjt and e
(2)

t+hjt and with sums SS
(1)

h;M and SS
(2)

h;M respectively. Then

we plot a standardized version of the di�erences SS
(1)

h;M � SS
(2)

h;M de�ned by

SS1;2
h;M =

SS
(1)

h;M � SS
(2)

h;M

SS
(2)

h;N�h=(N � h�N0)
(18)

against M , for M = N0 : : : ; N � h: The recursion formula

SS
1;2
h;M+1 = SS

1;2
h;M +

�
e
(1)

M+1+hjM+1

�2
�
�
e
(2)

M+1+hjM+1

�2
SS

(2)

h;N�h=(N � h�N0)
; M = N0; : : : ; N � h;
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shows that over intervals of values of M where the graph of (18) goes up,
the forecast performance of Model 2 is better; where it goes down, Model
1 is better; and where it has no general direction, neither model's forecast
performance dominates. The denominator in (18) provides a scale for the
interpretation of jumps in the graph.

This diagnostic has the important virtue of not requiring the assumption
that any of the models being compared is correct. Its use is not limited to
situations in which forecasting is the main goal of modeling, as the examples
of Section 5.3 will show.

AIC histories. Suppose the minimum AIC criterion is being used to de-
cide between two models for Y1; : : : ; YN with AIC statistics AIC

(1)

N jd+sD and

AIC
(2)

N jd+sD. Then the preference is determined by the sign of the di�erence

AIC1;2

N jd+sD = AIC
(1)

N jd+sD �AIC
(2)

N jd+sD

= 2
n
L̂
(2)

N jd+sD � L̂
(1)

N jd+sD

o
+ 2

n
m(1) �m(2)

o
; (19)

where L̂
(i)

N jd+sD denotes the maximized log-likelihood (12) and m(i) the num-
ber of estimated parameters of the i-th model, i = 1; 2. Often one wishes
to know something about the stability of such a model choice. In the clas-
sical situation in which Model 1 is a constrained version of Model 2, under

the assumption that Model 1 has the correct form, the large-sample distri-
bution of 2

n
L̂
(2)

N jd+sD � L̂
(1)

N jd+sD

o
is chi-square with m(2) � m(1) degrees of

freedom, from which a probability value can be calculated for AIC1;2

N jd+sD.
However, the assumptions required by this approach are too restrictive, not
least because so many naturally occurring time series model comparisons are
like the comparison of (14) and (16) in Subsection 4.3.1: neither model is a

constrained version of the other. X-12-ARIMA's AIC history option o�ers a
somewhat more versatile diagnostic of the stability of minimum AIC model
selections. For each model, the sequence of AIC values reestimated from
subspans of data Y1; : : : ; YM ; N0 � M � N can be obtained. From these,
the AIC di�erence sequence

AIC1;2
M = AIC

(1)

M �AIC
(2)

M ; N0 �M � N (20)

can be calculated and examined for constancy of sign. An application of this

diagnostic will be given in Section 5.4.
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We present four applications of regARIMA models and the model selec-
tion diagnostics discussed in Section 4.3 to problems encountered in seasonal

adjustment.

5.1 Using Regressors to Verify a Change in Seasonal

Pattern

For the regressors of Table 2 that model �xed seasonal e�ects and trading

day e�ects, and for their quarterly analogues, X-12-ARIMA has a built-in
procedure for modeling a change-of-regime, at a user-speci�ed point in time.
We illustrate the procedure for the �xed quarterly seasonal variables Mit

(which are de�ned like the �xed monthly seasonal variables of Table 2) and
a change-point designated Nc: For i = 1; 2; 3; de�ne

M c
it =

(
Mit; 1 � t � Nc

0; Nc < t � N
;

where N denotes the length of the modeled series. The program models a
change-of-regime by including both the Mit and the M c

it in the regressor set.
We consider again the net income series of Figure 2. To verify a change

in seasonal pattern at the time point Nc corresponding to the �rst quarter

of 1982, X-12-ARIMA was applied to estimate a model of the form

(1�B)(1�B12)

(
log Yt � �0LS

(1982:1)
t �

3X
i=1

�iMit �
3X
i=1

�ciM
c
it �

6X
i=4

�ixit

)

= (1� �B)(1��B12)at;

in which the regressors xit model an additional level shift identi�ed in the
second quarter of 1980 and additive outliers identi�ed in the third quarter
of 1974 and the �rst quarter of 1981. The AIC of this model, calculated
as in (13), has the value AICc = 993:1. The model of the same form but
without the M c

it can be used to represent the hypothesis of no change of

seasonal pattern. It has three fewer estimated parameters but a much larger
AIC value, AIC = 1028:8. Hence, by the minimum AIC criterion, the model
with a change in seasonal pattern is preferred.

A standard hypothesis test leads to the same conclusion. Since the second
model is a constrained version of the �rst (with constraints �ci = 0), two times

the di�erence of log-likelihoods, which is equal to

AIC �AICc + 2 � 3 = 41:7;
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see (19), can be compared to values of a chi-square distribution with 3 degrees
of freedom under the hypothesis of no change-of-regime. The value 41:7
strongly contradicts this hypothesis, being extraordinarily large for this chi-
square distribution.

5.2 Using AO Regressors to Replace Missing Data

The regARIMA modeling capability of X-12-ARIMA makes possible a
rather simple approach to circumventing or estimating missing observations.
The procedure requires the user to supply values for the missing observations

(any values will do) and to then �t a regARIMAmodel to the completed data
set with AO regressors at the times of the missing observations. (The value
�99999: in the input series always denotes a missing value and causes the
program to insert the appropriate AO regressor automatically.) If Yt0 is
the value speci�ed for the missing observation at time t0; and if �t0 is the

estimated coe�cient of the regressor AO
(t0)
t in the �tted model, then the

regression adjusted value,

Ŷt0 = Yt0 � �t0AO
(t0)
t ; (21)

provides an estimate of the missing datum that the program can use for
calculating forecasts and seasonal decompositions. If the user requests au-
tocorrelations and partial autocorrelations of the di�erenced data to help
identify a model, then the ordinary least squares estimate �OLSt0

is used in
(21) to provide an estimate needed to calculate these statistics.

There is an alternative procedure that estimates a missing datum via
a regARIMA model's Gaussian conditional expectation of the missing da-
tum given the available data. This procedure is optimal if the estimated
model is the true model and the data are Gaussian. It is implemented in
the regARIMA model-based signal-extraction seasonal adjustment programs
TRAMO and SEATS of Gomez and Maravall (1994). (Their procedure is
equivalent to the modi�ed Kalman �lter of Kohn and Ansley (1986), which
extends the approach proposed by Jones (1980) to the case of models with
di�erencing and missing data in the �rst d + sD time points.) In the case
of independent observations, it gives the same replacement values as (21)
(Cook and Weisberg 1982, p. 33). With regARIMA time series models,
theoretical calculations show that its values can be expected to be well ap-
proximated by those of (21) (Bruce and Martin 1989; Ljung 1993). We com-
pared TRAMO's \optimal" estimates with X-12-ARIMA's estimates from
(21) for several series from which observations were deleted at random af-
ter a regARIMA model had been identi�ed for the full series. Observations
that had been identi�ed as outliers were not candidates for deletion. The
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estimates of the missing values from both procedures were always very close
to each other. They were also usually quite close to the value of the deleted
datum (< 2% error). The worst error observed, about 6%, occurred with
the series of values of manufacturers' shipments of electrical appliances. The
estimation results for the three observations deleted from this series are given
in Table 3.

Table 3. \Optimal" and AO Regressor Estimates of Deleted Observations

from Shipments of Electrical Appliances

Date Value \Optimal" Est. Error Est. from (21) Error

5/1977 661. 660.61 .06% 660.48 .08%
9/1979 1088. 1156.25 6.27% 1159.07 6.53%
11/1981 1397. 1396.55 .04% 1396.07 .07%

TRAMO also implements the procedure of (21). We followed TRAMO's
use of �99999: as the missing value designator.

5.3 Comparing Trading Day Estimation Procedures

We now wish to illustrate the versatility of the model comparison di-
agnostic (18). It is not obvious how to compare estimates of e�ects from
regression models of the irregular component (Section 2.4) with analogous
estimates from regARIMA models of the observed series, for example the
trading day factors (2) and (15). Model selection procedures like those based
on AIC comparisons are inapplicable, because the models are �t to di�erent
time series. We shall show that forecast comparisons are possible because
forecasts of calendar e�ects estimated from a regression model of the irregu-
lars can be used to obtain forecasts of the observed series. This enables us to
call upon the model comparision principle that a model that produces bet-
ter forecasts can reasonably be assumed to produce calendar e�ect estimates
that better describe what is present in the series.

To begin, we need to explain how X-12-ARIMA calculates out-of-sample
h-step ahead forecasts when an e�ect is estimated from the irregular com-
ponent. It will be su�cient to discuss the case of trading day factors (2)
estimated from the model (3). Given estimates of the coe�cients �1; : : : ; �6,

the factors (2) can be calculated for all times t. We use TD(M)
t to denote the

factors, when these coe�cients have been estimated from the reduced data set
Y1; : : : ; YM (obtained without regARIMA forecast extension). A regARIMA

model can be identi�ed for the preadjusted series Z(N)
t = Yt=TD

(N)
t ; 1 �

t � N , possibly after nonlinear transformation to f(Z(N)
t ). Then, with this

model, out-of-sample forecasts YM+hjM for each M = N0; : : : ; N � h can be
calculated by the following steps.
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1. Do trading day estimation from the irregulars series of Y1; : : : ; YM to
obtain TD

(M)
t for t = 1; : : :M and t =M + h:

2. Let Zt = Yt=TD
(M)
t ; 1 � t � M . Calculate the out-of-sample forecast

ZM+hjM as in Section 4.2.2 from the regARIMA model after estimating
its parameters using only the data zt = f(Zt); 1 � t �M .

3. Calculate the forecast YM+hjM = TD
(M)

M+hZM+hjM .

The error eM+hjM associated with this forecast is de�ned to be YM+h �

YM+hjM provided that all AO, LS, and ramp regressors in the regARIMA
model for z1; : : : ; zN are zero at time M + h. Otherwise, de�ne

eM+hjM = TD
(M)

M+hf
�1(~zM+h)� YM+hjM ;

where ~zM+h denotes the result of subtracting these regression e�ects from
zM+h. The sequence SSh;M of accumulating sums of the squared errors
e2N0+hjN0

; : : : ; e2N jN�h is de�ned by (17). Comparisons between competing
trading day estimation approaches are made with graphs of the normalized
di�erences SS1;2

M de�ned in (18). In the comparisons we present, the model
for Yt that incorporates preadjustment by the X-11 trading day factors (2) is
designated Model 1, and the model of the form (14) is Model 2. Therefore,
decreasing graphs favor the irregulars-regression component estimates and
increasing graphs favor the regARIMA model estimates.

In the study by Chen and Findley of X-12-ARIMA's various regARIMA
trading day models (Chen and Findley, 1993, 1996b), there were 41 series
for which the regARIMA analogue (14) of (3) was preferred over models
that gave estimates of a coe�cient of the Leap Year regressor of Table 2
or that ignored length-of-month e�ects. For these 41 series, it is natural
to compare the approaches (14) and (3). This was done via graphs of (18)
for lags h = 1; 12. Only for 8 series was one approach found better than
the other: the regARIMA trading day model was favored 5 times and the
irregulars-regression model 3 times. We present two examples of graphs of
(18), one for each preference.

Figure 10 shows that for the series of retail sales from U.S. shoe stores
up to 1989, the regARIMA trading day estimates lead to persistently better
one-month and 12-month forecasts than the irregulars-regression estimates.
By contrast, Figure 11 reveals that for the series of values of U.S. factory
shipments of communications equipment up to 1983, the one-month forecasts
via the irregulars-regression trading day estimates are persistently better
after 1977, and the twelve-month forecasts are at least as good, on average,
as those of the regARIMA trading day model.
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Figure 10. Comparison of Two Trading Day E�ect Estimation Procedures

for Retail Shoe Sales via (18). Graphs are given for forecast leads (a) h = 1
and (b) h = 12. Model 1 in (18) utilizes irregular component regression

estimates of the form (3) and Model 2 the regARIMA estimates of the form

(14). These graphs of the accumulating squared forecast error di�erences

show that, at both forecast leads, the squared forecast errors of Model 2 are

persistently larger.
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Figure 11. Comparison of Two Trading Day E�ect Estimation Proce-

dures for Values of Shipments of Communications Equipment. The graphs

are analogous to Figure 10. Here, only for one-step forecasting are there

indications of a recurring di�erence in performance: in an average sense, the

squared forecast errors of Model 1 are smaller than those of Model 2 after

1976.
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There were no series for which the irregulars-regression model had per-
sistently better twelve-month forecasting and �ve series for which its perfor-
mance at lead 12 was persistently worse. Since h = 12 is usually the most
important forecast lead for forecast extension, we have concluded that the
regARIMA model approach of (14) should be the �rst approach considered,
instead of that of (2), when a reasonably well �tting regARIMA model is
available. (This approach also provides the advantages AIC has over the
irregular regression F-statistic that we described in Section 2.4.3.)

Similar comparisons of Easter holiday e�ect models estimated from the
irregulars and from the observed series can be found in Chen and Findley
(1996a). For all calendar e�ect model comparisons, including comparison
of a model with such a regressor to one without, each of the diagnostics
(18), sliding spans, revision histories, and AIC histories can provide useful
information.

5.4 Using AIC Histories to Decide Between Pread-

justments

In Findley and Monsell (1989), we considered the problem of comparing a
set of \subjective" preadjustments with a set of \objective" preadjustments
for the series of numbers of units of autos sold multiplied by an average price
for each type of car. The values of this series from 1979 on are graphed
in Figure 12a. The preadjustments were intended to remove the e�ects of
special, short-duration sales programs involving cash rebates to purchasers.
These programs were used by the automobile manufacturers to reduce their
inventories of unsold cars. Such programs cause a large increase in sales in the
month or two in which they occur followed by a substantial decrease in the
subsequent month or two. If such programs occur in the same month several
years in a row, then seasonal adjustment procedures incorporate much of their
e�ects into the seasonal factors. This is not correct when it is known that
the programs did not recur in later years. To prevent this distortion of the
seasonal factors, it is necessary to estimate the e�ects of these sales programs
and remove them from the series prior to seasonal factor calculation.

An expert analyst used her knowledge of the dates of sales programs to
select values of the irregular component of an X-11 seasonal decomposition
that she averaged to obtain the preadjustment factors (divisors) for sales
program e�ects that are graphed in Figure 12b. When she asked us about
this approach, we were concerned that the irregulars series would be an
unreliable source of information about these e�ects because of distortions in
the seasonal component induced by the sales programs. As an alternative,
we constructed �ve user-de�ned regressors to estimate sales program e�ects
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Figure 12. Monthly Auto Sales by Units (a) and Three Competing Series

of Adjustment Factors Estimating the E�ects of Manufactures' Sales Cam-

paigns. The \subjective" factors (b) were informally derived by a subject-

matter expert from an irregular component. The \objective" factors (c) came

from a regARIMA model. The \hybrid" factors (c) are \subjective" factors

up to 1985 and \objective" factors thereafter.
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in the years 1985-1987: one regressor each for the months of August, Septem-
ber, October and November, and a single regressor for December, 1986 and
January, 1987. To conform to the analyst's speci�cation of identical e�ects
for the same calendar month in successive years in which the month is af-
fected, the regressors for August, October and November each had the value
1 in their month for 1985-1987 and the value 0 in all other months. The
September regressor deviated from the analyst's pattern by having the value
1 in September of 1985 and 1986, but 0 in September of 1987 (and elsewhere),
a deviation strongly preferred by AIC. The �fth regressor had the values 1 in
December, 1986, �1 in January, 1987, and 0 elsewhere. We naively assumed
that the automatic outlier identi�cation procedure described in Section 4.1
and Appendix B would deal e�ectively with any important sales program ef-
fects in months prior to 1985, where the analyst had made numerous smaller
preadjustments (the later data were of greater interest). Our objectively ob-
tained divisors, estimated from a regARIMA model with the regressors just
described, are graphed in Figure 12c, along with automatically identi�ed
additive outlier adjustments.

In Findley and Monsell (1989), we reported that the AIC value of this
model was smaller by 17:6 than the AIC of the regARIMA model found for
the series with the subjective adjustments, indicating a strong preference for
the objective approach. However, a subsequent analysis of AIC's preferences
over time using the diagnostic (20) showed that prior to early 1985, the
subjective adjustments were preferred. Then W. P. Cleveland, who also had
the analyst's adjustments, kindly pointed out to us that there were errors in
our divisor set. (The divisors in Figure 12b are the correct ones). Thus it
was appropriate to redo our analysis. Labelling as Model 1 the regARIMA
model that produced the objective factors of Figure 12c and as Model 2
the regARIMA model using only subjective preadjustments (the automatic
outlier identi�cation procedure found no outliers), the graph of the history
of the AIC di�erences (20) given in Figure 13a leads to a conclusion similar
to the earlier one: overall, the objective adjustments are favored (the �nal
AIC di�erence is �13:7), but for a several year period beginning in 1983, the
subjective adjustments are better.

Therefore, we decided to try to replace Model 1 with a better model. We
did not want to add a large number of regressors to imitate the analyst's
adjustments prior to 1985. So we �t a hybrid model, in which the subjective
adjustments were applied prior to 1985, and the user-de�ned regressors were
used thereafter, together with any automatically identi�ed additive outliers.
(There were two such AOs: one at February, 1975; the other at December,
1988.). The resulting divisors are graphed in Figure 12d. The AIC di�erence
history favored the hybrid model throughout. However, knowing that AO
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Figure 13. AIC Di�erence Histories (20) Comparing Two Pairs of Models

That Use Di�erent Adjustment Factors of Figure 12. In (a), Model 1 uses

the \objective" factors and Model 2 the \subjective factors." In (b), Model 1

uses the \hybrid" factors and Model 2 the subjective factors and also the two

additive outlier variables used by Model 1. Only in (b) do the AIC di�erences

have a consistent sign, indicating a consistent preference for Model 1. In this

sense, the \hybrid" factors are preferred.
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regressors can have a large impact on AIC values, we wanted to determine
if this conclusion depended substantially upon the additive outliers included
in the hybrid model but not in the \subjective" model. To investigate this,
we augmented the latter model with the same two outlier regressors. In the
augmented model, the t-statistics of these two AO regressors were below the
critical value used in the automatic outlier procedure but above 2:0. The AIC
di�erence graph comparing the hybrid model and the augmented subjective
model is given as Figure 13b. For the calculation of (20), the hybrid model
is labelled Model 1, and the augmented subjective model is Model 2. The
graph shows that hybrid model is still consistently preferred. The �nal AIC
di�erence is�11:4 (about half of what its value had been before the subjective
model was augmented.)

These analyses demonstrate the power of the AIC history diagnostic to
enable di�cult model comparisons and to identify ways in which models
under consideration can be improved. Note that the forecast performance
diagnostics utilized in Section 5.3 are not applicable to the model comparisons
of this subsection, because the models cannot forecast the e�ects of interest.

Because the X-12-ARIMA program is designed for use with a broad va-
riety of operating systems, its interface uses command �les rather than win-
dows and menus. We made substantial e�orts to design a command structure
that is largely self-descriptive and easy to do standard runs with. The latter
is especially important, because the program has a very large number of ad-
justment and input/output options, yet its users should be able to deal with
most series knowing just a few options. We now present some examples to
give the reader a feeling for the interface.

6.1 Processing a Single Series

The simplest situation is that in which a single series is to be adjusted us-
ing default options. Suppose the series namedmyseries is stored in free format
in a �le named X�le.dat in the same directory as the X-12-ARIMA program,
along with the command �le. The command �le will be named myseries.spc
and must have an extension .spc, chosen to connote \speci�cations."

The commands for the basic situation, in which regARIMA models are
not used, and the program acts like the X-11 program in its default setting
(except that the seasonal �lter length selection criterion of Lothian (1984) is
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used), are as follows, assuming myseries begins in March of 1984:

series fstart = 1984.3 �le = \X�le.dat"g
x11 f g

To execute this .spc �le, the command x12a myseries is entered. When the
execution is �nished, the program writes the default output to a �le named
myseries.out in the same directory.

Suppose we wish instead to have what is essentially a default X-11-
ARIMA run, with 12 month forecast and backcast extension from an ARIMA
model selected from the default list of models. Suppose also, though, that
we want to have additive outliers and level shifts be automatically identi-
�ed (using the default t-statistic critical value 3:3 as described in Section 4.1
and Appendix B). The regression estimates of all identi�ed additive outliers
and level shifts are to be adjusted out of the series before seasonal factor
calculations begin. Since the default seasonal adjustment decomposition is
multiplicative, the log transform is chosen for the regARIMA models. For
the series of the previous example, the commands in the speci�cation �le
become

series fstart = 1984.3 �le = \X�le.dat"g
transform ffunction = logg
automdl f g
outlier f g

x11 f g

6.2 Processing Many Series

There are features that facilitate running the program on many series with
many .spc �les, but we shall illustrate only the simple situation in which the
same options, stored in a single .spc �le, are used for a large number of se-
ries, all of which have the same starting date and are stored in �les with
the same format. This can occur when a group of related series is exam-
ined for seasonality for the �rst time. It is also the natural situation when
simulation experiments are done to investigate properties of seasonal adjust-
ments or adjustment procedures. Examples include the resampling approach
to obtain standard errors for seasonal adjustments described in Findley and
Monsell (1990) and the use of simulations to obtain con�dence intervals for
the estimated duration of the Easter e�ect, described in Chen and Findley
(1996a). Studies using simulations to analyze sources of nonlinearity in the
X-11 procedure were performed by Ghysels, Granger and Siklos (1996) and
Findley (1996). With one .spc �le for many series, the names of the input
�les are listed in a �le that, in X-12-ARIMA terminology, is called a data

meta�le.
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Assume we have 500 monthly series, sim1,...,sim500, of the same length,
all starting in January 1970, all stored with FORTRAN format (12F6.0)
in the �les named sim1.dat,...,sim500.dat. Suppose we wish to seasonally
adjust them with 3 � 9 seasonal moving averages and 17-term Henderson
trend �lters, after �tting the ARIMA (0,1,3)(0,1,1)12 model without a lag
2 moving average term (via exact Gaussian likelihood maximization, the
default estimation method) in order to extend each series with 60 forecasts.
To accomplish this, we create a data meta�le whose name has the extension
.dta, say sim.dta, containing the data �le names,

sim1:dat
...

sim500:dat

:

In a .spc �le, that we shall name series.spc, we place the commands

series fstart = 1970.jan format = \(6f12.0)"g
transform ffunction = logg
arima fmodel = (0 1 [1 3])(0 1 1)g
forecast fmaxlead = 60g
x11 fseasonalma = s3�9 trendma = 17g

In this context, with a data meta�le named sim.dta, the command to execute
the program is x12a series -d sim. The -d ag informs the program of the
data meta�le.

The X-12-ARIMA program and its user's manual can be downloaded via
ftp from the Internet address ftp.census.gov. The FORTRAN source code is
available, as are executable versions for �ve platforms, DOS PCs, and SUN,
Hewlett Packard, DEC Alpha and DEC VAX workstations, in individual
subdirectories of the directory pub/ts/x12a. This ftp site also has a version
customized by Margaret Keating of the Federal Reserve Board for the FAME
time series database system. We hope that the easy availability of a versatile
program for seasonal adjustment, regARIMA modeling, and model selection
will stimulate many statisticians, economic modelers and economic analysts
to undertake re�ned analyses of seasonal and calendar e�ects in their data.
This would have important indirect bene�ts: A substantial increase in the
number of economic data users having expertise in seasonal adjustment would
lead to a more sophisticated use of adjusted data and would stimulate the
development of improved adjustment diagnostics, methods and practices.
(The SEATS and TRAMO programs are available from http://www.bde.es.)
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The most obvious and important feature lacking in X-12-ARIMA is high
resolution graphical diagnostics. Graphical diagnostics for seasonal adjust-
ment are an area that is ripe for further research, �fteen years after the
pioneering work done by the authors of SABL. We expect to begin work
soon on the development of a separate program to produce such graphics
from X-12-ARIMA output, one that will be usable on a variety of computer
platforms.
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APPENDIX A: HENDERSON FILTERS, MUSGRAVE

SURROGATES

To provide a larger context for our discussion of the criterion used to
obtain many of the asymmetric �lters, and to complete the description of the
default X-11 procedure of Figure 3, we start by outlining how the symmetric
Henderson �lter coe�cients h

(2H+1)
j are derived.

A.1 The Symmetric Henderson Filters

In the Appendix of Kenny and Durbin (1982), an insightful derivation

was given of the coe�cients h
(2H+1)
j of the symmetric Henderson �lter and of

the equivalence of Henderson's alternative criteria for determining them. It

is observed in Gray and Thomson (1996) that a slight modi�cation of Kenny
and Durbin's argument yields two improvements: one need not assume a

priori that the coe�cients are symmetric, and it is enough to require the
�lters to reproduce quadratic trends instead of cubic trends. We summarize
Gray and Thomson's approach. Suppose that, for �(H + 3) � j � H;

At+j = �+ �(t+ j) + (t+ j)2 + It+j; (A:1)

where the It+j are Gaussian variates with mean 0 and variance �2 which,

for di�erent j, are independent. We only consider �lters hj;�H � j � H
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that provide unbiased estimates of the value of the quadratic trend at time
t. Equivalently, when the It+j in (A.1) are 0 for all j, we require

HX

j=�H

hjAt+j = � + �t+ t
2
; (A:2)

for any values of �; � and : Let � denote the di�erencing operator, so
that �At = At � At�1 and �hj = hj � hj�1: Let E denote expectation.
Then, among �lters satisfying (A.2), the Henderson �lter is the minimizer of

the smoothness measure E
�
�3PH

j=�H hjAt+j

�2
: This can be reduced to a

smoothness measure on the �lter coe�cients,

E

0
@�3

HX
j=�H

hjAt+j

1
A
2

= �
2

H+3X
j=�H

�
�3
hj

�2
;

if we de�ne hj = 0 for j = �(H + 1);�(H + 2);�(H + 3). (On the left, �3

is applied to the At+j; on the right, to the hj:) With

qj(H) =
n
(H + 1)2 � j

2
on

(H + 2)2 � j
2
on

(H + 3)2 � j
2
o
;

and with a and b determined by

a

HX
j=�H

qj(H) + b

HX
j=�H

qj(H)j2 = 1

a

HX
j=�H

qj(H)j2 + b

HX
j=�H

qj(H)j4 = 0;

the Henderson coe�cients are given by

h
(2H+1)
j = qj(H)(a+ bj

2);�H � j � H:

This formula shows that they are symmetric, h
(2H+1)
j = h

(2H+1)
�j :

A.2 Musgrave's Criterion for Asymmetric Surrogates

So that the following discussion can encompass both trend and seasonal
�lters, we change to a neutral notation, Wj for the original �lter coe�cients
and Xt+j for the variates to which they are applied. For given X1;:::;XT ,
and positive integer J such that 2J +1 � T; we can calculate

PJ
j=�J WjXt+j

only for indices t satisfying J + 1 � t � T � J . To obtain coe�cients
for calculating �ltered values at the remaining times t, Musgrave (1964)
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applied a minimum mean square revision criterion to the case in which the
Xt are independent Gaussian variates with variance �

2 and with a linear mean
function, EXt = � + �t (in contrast to the quadratic mean in (A.1)). More
precisely, if t = T�J+d with 1 � d � J , Musgrave's strategy (independently
deduced in Laniel, 1986) is to �nd the asymmetric �lter whose coe�cients

Vj ;�J � j � J � d; sum to one and also minimize

E

0
@ JX
j=�J

WjXt+j �
J�dX
j=�J

VjXt+j

1
A
2

:

M. Doherty, in an unpublished report (Doherty 1992), derived an explicit
formula for the coe�cients of these abbreviated �lters that has been imple-

mented in X-12-ARIMA. To have a convenient form, we change notation.
Set N = 2J + 1, M = N � d and, for 1 � j � N; de�ne wj = Wj�1�J and
xj = Xt�J+(j�1): We are assuming that

xj =  + �j + Ij;

where the Ij are independent Gaussian variates with mean 0 and variance
�
2. De�ne �� = jExj � Exj�1j (= j�j) and �I = E jIj � Ij�1j (= 2�=

p
�) and

R = ��=�I:

Then the coe�cients vj; 1 � j �M satisfying
PM

j=1 vj = 1 that minimize

E

0
@ NX
j=1

wjxj �
MX
j=1

vjxj

1
A
2

are given by

vj = wj +
1

M

NX
i=M+1

wi +
(j � (M+1

2
)) 4

�
R
2

1 + M(M�1)(M+1)
12

4
�
R2

NX
i=M+1

�
i� (

M + 1

2
)

�
wi:

(A:3)
Doherty (1992) also derives a formula for the vj when no assumption is made

about the form of the mean function of the xj. With symmetric �lters,
wN+1�j = wj; and from this property it follows that the time-reversed �lter

coe�cients vRj = vN+1�j; d+1 � j � N minimizeE
�PN

j=1wjxj �PN
j=d+1 v

R
j xj

�2
and therefore provide the surrogates for symmetric �lters near the beginning
of the time series.

In X-12-ARIMA, to obtain the default asymmetric surrogates for the 9-

term and 13-term monthly Henderson �lters, R�1 is set equal to .99 and 3.5,
respectively. For longer Henderson �lters R�1 = 4:5 is used. For the 5-term
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and 7-term quarterly �lters, .001 and 4.5, respectively, are used. For the 3�9
seasonal �lter, with the time index j having units of years, R�1 = 9:5 is used
in (A.3) to determine asymmetric surrogates.

Finally, we explain how the lengths are determined for the Henderson
�lters used in (i) of Stages 2 and 3 of Figure 3. In each of these Stages,

an estimate R̂�1of R�1 is calculated as follows. Let T̂t denote the 13-term
symmetric Henderson trend of the available seasonally adjusted series (A

(1)
t in

Stage 2, A
(2)
t in Stage 3), and let Ît denote the irregular component resulting

from removing this trend estimate from the seasonally adjusted series. With
�C denoting the sample mean of the available values of the absolute trend
changes

���T̂t � T̂t�1
��� and �I the sample mean of the

���Ît � Ît�1

��� ; the value of the
noise-to-signal ratio,

R̂
�1 =

�I
�C
,

called the I-bar C-bar ratio, determines the value of 2H + 1 as follows. If
R̂
�1
< 1:0; the 9-term Henderson �lter is used. Otherwise, in Stage 2, the 13-

term �lter is used. In Stage 3, the 13-term �lter is used when 1 < R̂
�1
< 3:5;

but the 23-term Henderson �lter is used when R̂�1 � 3:5: This procedure is
called the \X-11 variable trend cycle routine".

APPENDIX B. THE PROCEDURE FOR AO AND LS

DETECTION

We describe the additive outlier and level shift detection procedure men-
tioned in Section 4.2. The algorithm proceeds from critical values ao; ls

speci�ed separately for the AO- and LS-regressor t-statistics, denoted T ao
t ; T

ls
t ;

that are calculated at each time point t in each iteration of the forward addi-
tion cycle described below. (The default values are ao = 

ls = 3:3:) Let Tt
denote one of these statistics,  the corresponding critical value, � and  the
vectors of regression coe�cients and ARMA model coe�cients, and at(�;  )

the estimates of the innovations at determined by these coe�cients in the
model (10). AO regressors are available for all observation times 1 � t � N ,
LS regressors for all but the �rst two and the last of these times.

Initialization: Estimate the coe�cients (�;  ) of the model (10) speci�ed
by the user. If the model includes prespeci�ed AO and LS regressors,

these will always be kept in the regressor set.

Forward Addition:

1. Calculate the robust standard error, �Ra = 1:49�mediant jat(�;  )j,
for the current �;  .
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2. Using the current  and �R
a
, calculate the values of Tt for all AO

and LS regressors not currently in the model, i.e., excluding those
prespeci�ed or already identi�ed in forward addition. (To calcu-
late Tt for any given outlier regressor, the generalized least squares
estimation determined by  is carried out for the regressors in the

model plus the given outlier regressor.)

3. Determine the outlier regressor with maximum jTtj.

4. If jTtj < , add this regressor to the model and reestimate � and

 . Otherwise, stop.

Repeat Steps 1 { 4 until there are no additional outliers satisfying jTtj � .

Backward Deletion: Start with the model including all outlier regressors

added in the forward addition stage.

1. Calculate maximum likelihood estimates of (�;  ; �a).

2. Using the estimated (�;  ; �a), calculate Tt for all AO and LS
regressors identi�ed in forward addition that remain in the model.
Determine which of these regressors has min jTtj :

3. If min jTtj < , delete this regressor from the model and go to 1.
Otherwise, stop.

An alternative procedure is available which, at Step 4 of forward addi-

tion, adds to the model all outlier regressors with jTtj � :
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